
Statisticians have special uses for the Monte Carlo methods introduced in the previous note.
Very often statisticians run computer experiments to check how well a statistical method
performs. This is particularly important when a statistical method, say a test of hypotheses
or the construction of a confidence interval, depends on asymptotic results established
under the assumption that the sample size approaches infinity. You may recall the central
limit theorem, which tells us that a sample mean, centered and then divided by its standard
deviation, will have a distribution approaching the standard normal distribution as the
sample size is increased to infinity. It is upon such results that so many statistical methods
are based; but in practice, it is impossible to observe an infinite sample size. It therefore
becomes important to know how large a sample size is large enough for asymptotic
distribution theory to “kick in” and ensure that our methods have the advertized properties
—Type I error rates of tests and coverage probabilities for confidence intervals, for example.

These computer experiments are essentially Monte Carlo approximations to integrals, not so
different from those we studied in the previous note.

Approximating an expected value

The Monte Carlo method for approximating an integral can be used to approximation an
expected value, which is useful when this is difficult to compute exactly. Recall that for a
random variable , the expected value, denoted represents the central value of the
distribution of in the sense that if one were to observe many realizations of and average
them, this average should be close to . So we think of as the theoretical mean of ,
that is the mean we would obtain if we could observe an infinite number of times.

For example, if for some and , then . For
another example, if for some number of Bernoulli trials and
some success probability , then .

In these two examples, formulas are available for obtaining , but this may not always be
the case, especially if one is interested in the expected value of some transformed version of

, say . It may be quite difficult to obtain a formula giving an expression for ,
depending on the particular function . For example, if , there are no
no simple formulas giving or . In such cases, it may be sufficient to obtain
a Monte Carlo approximation to the expected value as an alternative to working out how to
compute the exact value.

Here is how Monte Carlo simulation works: It is based on a result in probability theory called
the Strong Law of Large Numbers, which says that as you draw a larger and larger number of
realizations of a random variable, the average of these realizations will approach the
expected value of the random variable. To leverage this result, the Monte Carlo strategy for
constructing an approximation to the expected value of a random variable is to generate a

Monte Carlo experiments

Karl Gregory
AUTHOR

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 1/9

b b

I glade b a glas ja da

Eg u Un Unit a b

MFCaloappoximationofanepatI

Law of large numbers

Xu Normal g 8

x ̅
Finito
as n 8

gets done to µwith high prob as nx ̅
x ̅ Kita

x ̅ Kitkat x ̅ Xu

large number of realization of , say and then use the average
 as an approximation to . Similarly, to obtain an approximation to ,

where is some function transforming the values of , one uses the average
.

Suppose we want to find , where . The code below runs a Monte
Carlo simulation to obtain an approximation to .

[1] 0.8276665

Try running this several times with smaller and larger choice of . Youʼll notice that the
result becomes more stable for larger values of .

It is sometimes interesting, having generated , to make a plot of the sequence
of Monte Carlo approximations

We can see in the plot below that the approximation in the beginning (when we are
averaging just a very small number of realizations) is very erratic and unreliable. However,
the approximation becomes more stable as we include more realizations. The code below
uses the cumsum() function, which takes a cumulative sum of a numeric vector. Run ?
cumsum() to learn how it works.

Normal example

N <- 5000
X <- rnorm(N) # mu = 0 and sd = 1 by default
gX <- sqrt(abs(X))
mgX <- mean(gX)
mgX

mgX_seq <- cumsum(gX)/c(1:N)
plot(mgX_seq,
 type="l",
 ylab = "Monte Carlo approximation",
 xlab = "N")
abline(h = mgX,lty = 3)

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 2/9

What about for approximating a probelility

Say Bernoulli p

XEEPH.si

EX 0 1 p 1 f

Set x ̅ i Xu ÄH p as now

We quite often use Monte Carlo simulation when our random variable is a Bernoulli
random variable with an unknown success probability . Recalling how to compute the
expected value for discrete random variables, we see that for , we have

so the expected value is the same as the probability .

But in what kind of situation will we not know the success probability ? We will come to
such a case in a moment, but first, as an exercise, letʼs see how a Monte Carlo simulation
would look for approximating the expected value, i.e. the success probability of a Bernoulli
random variable when this is known:

[1] 0.2086

Bernoulli examples

p <- 0.2 # suppose this is the value of p, but that it is unknown to us
N <- 5000
X <- rbinom(N,1,p)
mX <- mean(X)
mX

make a plot
mX_seq <- cumsum(X)/c(1:N)
plot(mX_seq,
 type="l",
 ylab = "Monte Carlo approximation",

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 3/9

We notice, as we did in the first example, that the Monte Carlo approximation improves as
the number of realizations on which it is based increases.

Now, how about a setting in which the true success probability is unknown to us? A very
common application of Monte Carlo simulation is to evaluate the performance of confidence
intervals or statistical tests advertised to guarantee a certain coverage probability or type I
error rate. One can construct the confidence interval or run the test on a large number of
simulated data sets in order to obtain a Monte Carlo approximation to the probability that
the confidence interval will cover its target or that the test will reject its null hypothesis.

Coverage probability of a confidence interval

First consider assessing the coverage performance of a confidence interval. Suppose one is
to observe a random sample from some distribution having unknown mean
and some finite variance, and one decides to construct a confidence interval for as

where , , and is the
upper quantile of the distribution with degrees of freedom , where .
This is the classical “ -interval”, and it is guaranteed to capture the true mean with
probability exactly provided is a random sample from a population with a
Normal distribution. However, if the population distribution is not Normal, this interval will
not have exactly the advertised coverage probability of (though one expects that its

 xlab = "N")
abline(h = p,lty = 3) # horizontal line at the true p

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 4/9

I

what if not tre

2 Ifk.in iN y then the C I

x ̅ tn.im ÄH
Zu1,212

of 1 n i

Contains
µ

with prob 1 α

What it vn Export.im
adn 20

t.tt

n 10

Do this N time Ex 2

i Draw Xu Exponential a 2 0.05

ii Compute internal

x ̅ tn i.ae

iii check if intern covers the true mean

Gut proportion of times it covered

TI 101 up µ

coverage probability will approach as increases, because of the central limit
theorem). To get an approximation to the probability with which this interval will cover its
target when the population distribution is not normal, one can run a Monte Carlo simulation.
Indeed, it is quite difficult to investigate the performance of this interval in any other way
when the population is non-normal!

Here is how we can think about it: Let be a variable taking the value if the confidence
interval covers its target and taking the value zero if the interval misses. Then is a
Bernoulli random variable with unknown success probability . Equipped with the
knowledge of the for loop, we can run a Monte Carlo simulation to obtain an approximation
to the coverage probability of the interval when the sample is drawn from some
distribution other than a Normal distribution—and for any sample size .

Letʼs suppose are drawn from the distribution, so that
 (see my STAT 515 lecture on this here). Here we go:

[1] 0.8992

In the Monte Carlo simulation, the confidence interval contained the
true mean of the time.

Type I error rate of a test

Now letʼs consider using Monte Carlo simulation to obtain the Type I error rate of a statistical
test when the assumptions required for the test do not hold. Recall that the Type I error rate
of a test is the probability that it rejects the null hypothesis when this is true. As an example
of a test, letʼs use the test for equality of means in a one-way ANOVA experiment (for a
refresher on this, see my STAT 515 notes here). Suppose we have treatment groups with

n <- 10 # set the sample size n
lambda <- 1/2 # use parameterization of exponential s
mu <- 1/lambda # the population mean targeted by the c
alpha <- 0.05 # set alpha to 0.05 to get a 95% confid
t_val <- qt(1 - alpha/2,n-1) # retrieve the t-quantile

N <- 5000 # set the number of Monte Carlo realiza
X <- numeric(N) # create an empty vector to populate wi
for(i in 1:N){

 Y <- rexp(n,lambda) # draw sample of size n from exponentia
 Ybar <- mean(Y)
 Sn <- sd(Y)
 lo <- Ybar - t_val * Sn / sqrt(n)
 up <- Ybar + t_val * Sn / sqrt(n)

 X[i] <- (lo < mu) & (up > mu) # check if confidence interval contains

}
mean(X)

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 5/9

https://people.stat.sc.edu/gregorkb/STAT_515_fa_2023/STAT_515_Lec_08_slides_annotated.pdf
https://people.stat.sc.edu/gregorkb/STAT_515_fa_2023/STAT_515_Lec_17_slides_annotated.pdf

Yi Mit
E i

j 1 n

zu Iggy

II

in each

son

Ho Mi K
It Not all mein the same

Regent Ho if Fast FK i.kln.it α

Faul Ken i

1A

FaulKlar11,2

1 3

Y t.tv

Yok

1 2 33 2 1 1 11

1 11 2222 3333

Kronecker product

subjects per treatment group and let denote the response observed on subject of
treatment group . One typically assumes the model

where the are treatment group means and the are independent error terms with the
 distribution for some unknown . The test rejects the equal-means

hypothesis

at significance level if

where is the upper quantile of the distribution with numerator degrees
of freedom and denominator degrees of freedom .

Now, the above test is calibrated such that when is true, it will still reject this hypothesis
with probability . However, the calibration of the test depends on the assumption that the
responses are normally distribution around the treatment group means. If this is not the
case, there is no guarantee that the test will maintain the its advertised Type I error rate.

Below is a Monte Carlo simulation designed to obtain an approximation to the Type I error
rate of the one-way ANOVA F-test when the error terms do not have the normal
distribution but rather a skewed distribution, namely the chi-squared distribution with
degree of freedom 1, centered by subtracting 1 (if then). The code makes use
of the Kronecker product operator %x% for setting up the treatment vector and the lm()
function for computing the F statistic.

K <- 3 # set number of treatment
n <- 3 # set number of subjects i
trt <- as.factor(c(1:K) %x% rep(1,n)) # construct trt column as
alpha <- 0.05

N <- 5000 # set number of Monte Carl
X <- numeric(N) # create empty vector to p
for(i in 1:N){

 e <- rchisq(n*K,df=1)-1 # generate error terms fro
 Y <- e # draw Y such that the trt

 lm_out <- lm(Y~trt) # use lm() function to run
 sum_lm_out <- summary(lm_out) # dig out the F statistic
 Fstat <- sum_lm_out$fstatistic[1]
 pval <- 1 - pf(Fstat,K-1,K*(n-1)) # compute the p-value

 X[i] <- pval < alpha # reject the null hypothes

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 6/9

[1] 0.0346

The Monte Carlo simulation approximated the Type I error rate of the test in this setup as
0.0346, somewhat lower than the nominal 0.05. We refer to 0.05 as the “nominal” size,
because this is the advertised or “named” size of the test, whereas the test actually performs
with a lower Type I error rate (not necessarily a good thing, because of the power/size trade-
off), suggesting that the test is unduly conservative (overly reluctant to reject) in this setup.

Practice

Practice writing code and anticipating the output of code with the following exercises.

1. Write a function which computes the test statistic and returns the p-value of Pearsonʼs
chi-squared test of no association between two categorical variables having and
levels, respectively. That is, given a table of observed counts

and letting denote the sum of the counts in row , the sum of the counts in
column , and the sum of all the observed counts, write a function to compute

where . The p-value of the test statistic is given as the probability
that a random variable having the distribution exceeds the observed value

of .

2. We can generate a table of observed values under the null hypothesis of no association
with the code below. Use this code as a starting point to write a simulation which
generates such tables of observed counts and on each one of them carries out the
test of no association as some significance level of your own choosing (you may use
your function from 1. or you may use the chisq.test() function to carry out the test).
Record on what proportion of times out of the the null hypothesis is rejection; this
is the Type I error rate.

}
mean(X) # the Type I error rate

Write code

J <- 3 # number of rows
K <- 4 # number of columns
N <- 500 # number of subjects

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 7/9

 V
U 1 2 3 4
 1 38 6 24 35
 2 79 19 44 60
 3 75 19 42 59

3. The code below generates fake simple linear regression data according to the model

where the error terms , instead of having a normal distribution as is commonly
assumed, have a skewed distribution—in particular a chi-squared distribution shifted so
as to have zero mean and scaled so as to have unit variance. The code then uses the
lm() function to obtain a table of coefficient estimates which includes the p-value for
testing : versus : . Note that the non-normality of the error terms
shows up in the normal Q-Q plot to a degree that we might say we cannot trust an
analysis based on the assumption of normal error terms. However, asymptotic theory
suggests that even when the error terms are not normally distributed, the least-squares
regression coefficient estimators should still have approximately normal distributions if
the sample size is large. To investigate this, run a simulation, generating many data sets
(say 1000) exactly as below and obtain for each data set the p-value for testing whether
the coefficient is nonzero. Then record on what proportion of data sets the -value
fell below . Note that in the code below the true value of is set to zero, so that
the null hypothesis is true. The result of the simulation will therefore be an
approximation to the actual Type I error rate of the test (remember that we reject
when the p-value is less than our significance level , and the Type I error rate is the
probability of falsely rejecting). This simulation will tell us whether the non-
normality of the error term distribution will cause our inferences to be invalid.

U <- sample(1:J,N,prob = c(0.2,0.4,0.4),replace = T)
V <- sample(1:K,N,prob = c(0.4,0.1,0.2,0.3),replace = T)
O <- table(U,V)
O

n <- 20
df <- 2
b0 <- 1
b1 <- 0

x <- runif(n,0,5)
e <- (rchisq(n,df) - df)/sqrt(2*df) # scale to have zero mean and unit v
y <- b0 + b1*x + e

out <- lm(y~x)
plot(out,which = 2)

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 8/9

 Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.4581373 0.3258679 1.405899 0.1767817
x 0.1788889 0.1104461 1.619694 0.1226852

summ_lm <- summary(out)
summ_lm$coefficients

9/16/25, 12:02 PM Monte Carlo experiments – Computing in Statistics

https://gregorkb.github.io/compstat/R_MCexperiments.html 9/9

