STAT 714 fa 2025 Lec 00

Overview of linear models course

Karl B. Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.

2 Linear models with random and mixed effects

What isn't a linear model?

One-sample problem

For responses Y_1, \ldots, Y_n , assume

$$Y_i = \mu + \varepsilon_i, \quad i = 1, \dots, n,$$

where

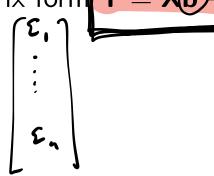
- \bullet μ is the mean
- ε_i are independent Normal $(0, \sigma^2)$

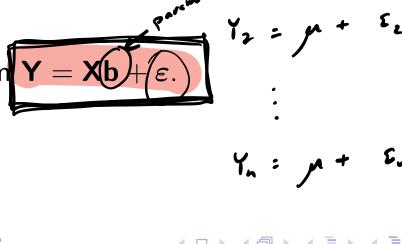
Goal: Make inference on μ .

Exercise: Put equations in matrix form Y = Xb

$$\begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_n \end{bmatrix} = \begin{bmatrix} 1 \\ \vdots \\ 2 \end{bmatrix}$$

$$+ \begin{bmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{bmatrix}$$





$$Y = \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} \qquad X = \begin{bmatrix} \vdots \\ \vdots \\ \vdots \\ \vdots \end{bmatrix}$$

Simple linear regression

For responses Y_1, \ldots, Y_n , assume

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, \ldots, n,$$

where

- β_0 is the intercept
- β_1 is the slope
- ε_i are independent Normal $(0, \sigma^2)$

$$\begin{bmatrix} Y_{i} \\ \vdots \\ Y_{n} \end{bmatrix} = \begin{bmatrix} 1 & x_{i} \\ \vdots \\ 1 & x_{n} \end{bmatrix} \begin{bmatrix} \beta & 0 \\ \beta & 1 \end{bmatrix} + \begin{bmatrix} \varepsilon_{i} \\ \vdots \\ \varepsilon_{n} \end{bmatrix}$$

Goal: Make inference on β_0, β_1 .

$$Y_{1} = \beta_{0} + \beta_{1} \times_{11} + ... + \beta_{p} \times_{p_{1}} + \Sigma_{1}$$
 \vdots
 $Y_{n} = \beta_{0} + \beta_{1} \times_{1n} + ... + \beta_{p} \times_{p_{n}} + \Sigma_{n}$

Multiple linear regression

where

For responses Y_1, \ldots, Y_n , assume

$$Y_{i} = \beta_{0} + \beta_{1} \underbrace{\beta_{1}}_{1:i} + \cdots + \beta_{p} x_{pi} + \varepsilon_{i}, \quad i = 1, \dots, n,$$
here
$$\beta_{0} \text{ is the intercept}$$

$$\beta_{0} \text{ are the linear effects of the covariates}$$

- β_1, \ldots, β_p are the linear effects of the covariates
- ε_i are independent Normal $(0, \sigma^2)$

Goal: Make inference on β_0, β_1 .

Cell-means model (One-way ANOVA)

For responses Y_{ij} , assume

$$Y_{ij} = \mu_i + \varepsilon_{ij}, \quad i = 1, \ldots, \underline{a}, \quad j = 1, \ldots, \underline{n}_i$$

where

- \bullet μ_i are the treatment means
- ε_{ij} are independent Normal $(0, \sigma^2)$

Goal: Test for differences in treatment means.

$$Y_{11} = M_1 + \Sigma_{11}$$
 $Y_{12} = M_1 + \Sigma_{12}$
 $Y_{21} = M_2 + \Sigma_{21}$
 $Y_{22} = M_2 + \Sigma_{22}$

$$Y = \begin{bmatrix} Y_{11} \\ Y_{12} \\ Y_{21} \\ Y_{22} \end{bmatrix} \quad X = \begin{bmatrix} 1 & 0 \\ 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{bmatrix} \quad b = \begin{bmatrix} \mu_1 \\ \mu_2 \\ \vdots \\ \mu_2 \end{bmatrix} \quad c : \begin{bmatrix} c_{11} \\ c_{12} \\ c_{21} \\ \vdots \\ c_{22} \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ Y_{22} \end{bmatrix} \quad d : \begin{bmatrix} c_{11} \\ c_{12} \\ \vdots \\ c_{22} \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ \vdots \\ \vdots \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\ \vdots \\ U = 1 \end{bmatrix}$$

$$U = \begin{bmatrix} Y_{11} \\ Y_{12} \\$$

Treatment effects model (One-way ANOVA)

For responses Y_{ii} , assume

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad i = 1, \dots, a, \quad j = 1, \dots, n_i$$

where

ullet μ is a mean

• α_i are treatment effects

• ε_{ii} are independent Normal $(0, \sigma^2)$

$$Y_{ij} = \mu + \alpha_i + \varepsilon_{ij}, \quad i = 1, \dots, a, \quad j = 1, \dots, n_i$$

$$i = 1, 2 \quad (a = 2)$$

$$n_i = 2$$

$$\forall_{11} = \mu + d_1 + \varepsilon_{12}$$

$$\forall_{12} = \mu + d_1 + \varepsilon_{12}$$

$$\forall_{13} = \mu + d_2 + \varepsilon_{23}$$

$$\forall_{21} = \mu + d_2 + \varepsilon_{23}$$

$$\forall_{22} = \mu + d_2 + \varepsilon_{23}$$

Goal: Test for differences in treatment means. \times : $\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix}$ Exercise: Put equations in matrix form $Y = Xb + \varepsilon$.

$$X = \begin{bmatrix} & & & \\ & b = & \\ & & \\ & & \\ & & \end{bmatrix}$$

Treatment effects with continuous covariate (One-way ANCOVA)

For responses Y_{ii} , assume

$$Y_{ij} = \mu + \alpha_i + \beta x_{ij} + \varepsilon_{ij}, \quad i = 1, \dots, a, \quad j = 1, \dots, n_i$$
where
$$\begin{array}{c} i = 1, 2, \quad \alpha = 2 \\ - y_{i1} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i2} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i1} \\ - y_{i2} = \mu + \alpha_i + \beta x_{i2} \\ - y_{i2} = \mu + \alpha_i +$$

Exercise: Put equations in matrix form
$$\mathbf{Y} = \mathbf{X}\mathbf{b} + \boldsymbol{\varepsilon}$$
. $\mathbf{q_{xy}}^{\boldsymbol{\gamma}}\mathbf{q_{xy}}$

Goal: Test for differences in treatment means.
$$X = \begin{bmatrix} 1 & 0 & x_{11} \\ 1 & 0 & x_{12} \\ 1 & 0 & x_{21} \\ 1 & 0 & 1 & x_{22} \end{bmatrix}$$
 Exercise: Put equations in matrix form $Y = Xb + \varepsilon$. $y_{xy} y_{xx} y_{x} y_{$

Two-way cell means model

For responses Y_{ijk} , assume

$$Y_{ijk} = \mu_{ij} + \varepsilon_{ijk}, \quad i = 1, \dots, a, \quad j = 1, \dots, b, \quad k = 1, \dots, n_{ij}$$

where

- ullet μ_{ii} are treatment means
- ε_{ijk} are independent Normal $(0, \sigma^2)$

Goal: Test for differences in means.

Two-way treatment effects model (Two-way ANOVA)

For responses Y_{ijk} , assume

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk}, \quad i = 1, \ldots, a, \quad j = 1, \ldots, b, \quad k = 1, \ldots, n_{ij}$$

where

- ullet μ is a mean
- ullet α_i are treatment effects for factor 1
- $\beta_{\mathbf{f}}$ are treatment effects for factor 2
- \bullet $(\alpha\beta)_{ij}$ are interaction effects
- ε_{ijk} are independent Normal $(0, \sigma^2)$

Goal: Make inference on μ , $\alpha_1, \ldots, \alpha_a$.

a=2, b=2, n:-2

$$Y_{ijk} = \mu + \alpha_i + \beta_j + (\alpha\beta)_{ij} + \varepsilon_{ijk},$$

$$\frac{Y_{111}}{Y_{121}} = \int_{A} + d_{1} + \int_{B_{1}} + \int_{A} d_{1} + \int_{B_{2}} + \int_{A} d_{2} + \int_{B} d_{$$

2 Linear models with random and mixed effects

What isn't a linear model?

One-way random effects model

For responses Y_{ii} , assume

$$Y_{ij} = \mu + A_i + \varepsilon_{ij}, \quad i = 1, \dots, a, \quad j = 1, \dots, n_i$$

$$i = 1, 2 \quad (\alpha = 2)$$

$$N_i = 2$$
• ε_{ij} are independent Normal $(0, \sigma_{\varepsilon}^2)$
• A_i are independent Normal $(0, \sigma_A^2)$
• A_i and ε_{ij} are independent
$$Y_{22} = \mu + A_i + \varepsilon_{i1}$$
• A_i
• A_i and ε_{ij} are independent

where

Goal: Test if treatment effect variance σ_A^2 is zero.

$$\begin{array}{c}
\gamma_{11} \\
\gamma_{12} \\
\gamma_{21} \\
\gamma_{22}
\end{array}$$

$$\chi = \begin{bmatrix}
1 \\
1 \\
1 \\
1
\end{bmatrix}$$

$$\chi = \begin{bmatrix}
1 \\
0 \\
0 \\
1 \\
1
\end{bmatrix}$$

$$\chi = \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}$$

$$\chi = \begin{bmatrix}
1 \\
0 \\
0 \\
0
\end{bmatrix}$$

$$n : \begin{bmatrix} A_1 \\ A_2 \end{bmatrix}$$

Two-way random effects model

For responses Y_{ijk} , assume

$$Y_{ijk} = \mu + A_i + B_j + (AB)_{ij} + \varepsilon_{ijk}, \quad i = 1, \ldots, a, \quad j = 1, \ldots, b, \quad k = 1, \ldots, n_{ij}$$

where

- ε_{ijk} are independent Normal $(0, \sigma_{\varepsilon}^2)$
- A_i are independent Normal $(0, \sigma_A^2)$
- B_i are independent Normal $(0, \sigma_B^2)$
- $(AB)_{ij}$ are independent Normal $(0, \sigma_{AB}^2)$
- $A_i, B_i, (AB)_{ij}$, and ε_{ij} are independent

Goal: Test whether variance components σ_A^2 , σ_B^2 , σ_{AB}^2 are equal to zero.

Two-way mixed effects model (Randomized complete block design)

For responses Y_{ijk} , assume

$$Y_{ijk} = \mu + \alpha_i + B_j + (\alpha B)_{ij} + \varepsilon_{ijk}, \quad i = 1, \ldots, a, \quad j = 1, \ldots, b, \quad k = 1, \ldots, n_{ij}$$

where

- ullet μ is a mean
- \bullet α_i are treatment effects
- ε_{ijk} are independent Normal $(0, \sigma_{\varepsilon}^2)$
- B_i are independent Normal $(0, \sigma_B^2)$
- $(\alpha B)_{ij}$ are independent Normal $(0, \sigma_{AB}^2)$
- B_i , $(AB)_{ij}$, and ε_{ij} are independent

Goal: Test if variance components are equal to zero; test for treatment effects.

One-way treatment effects model with subsampling

For responses Y_{ijk} , assume

$$Y_{ijk} = \underbrace{\mu + \alpha_i}_{ijk} + \underbrace{\varepsilon_{ij} + d_{ijk}}_{ijk}, \quad i = 1, \dots, a, \quad j = 1, \dots, n_i, \quad k = 1, \dots, m_{ij}$$
re

- ullet μ is a mean
- \bullet α_i are treatment effects
- ε_{ij} are independent Normal $(0, \sigma_{\varepsilon}^2)$ d_{ijk} are independent Normal $(0, \sigma_{d}^2)$
- \bullet ε_{ii} and d_{iik} are independent

Goal: Test for differences in the treatments.

2 Linear models with random and mixed effects

3 What isn't a linear model?

A *linear model* gives the expected value of the response as a linear function of some parameters.

E.g. the model $Y_i = \beta_0 e^{\beta_1 X_i} + \varepsilon_i$, $i = 1, \ldots, n$ is a non-linear model.

2 Linear models with random and mixed effects

What isn't a linear model?

The goal is that by the end of the course you should:

- Know how to conduct inference in various linear models.
- ② Understand theoretical justifications of these inference methods (Like why you should use an F-test with such-and-such degrees of freedom).
- Have a solid understanding of linear algebra and its role in statistics.