STAT 714 fa 2025 Lec 01 #### Least squares estimation in linear models Karl B. Gregory University of South Carolina These slides are an instructional aid; their sole purpose is to display, during the lecture, definitions, plots, results, etc. which take too much time to write by hand on the blackboard. They are not intended to explain or expound on any material. Projection and idempotent matrices ② Generalized inverses 3 Least-squares geometry #### Idempotent matrix A square matrix **A** is called *idempotent* if $\mathbf{A}^2 = \mathbf{A}$. **Exercise:** Verify that these are idempotent matrices: $$\left[\begin{array}{cc} 3 & -2 \\ 3 & -2 \end{array}\right] \qquad \left[\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right]$$ #### Projection matrix A square matrix ${f P}$ is called a *projection matrix* onto the space V if - P is idempotent - $oldsymbol{0}$ for any $oldsymbol{x}$, $oldsymbol{P}oldsymbol{x} \in V$ - ullet for any $z \in V$, Pz = z Sometimes we call projection matrices simply "projections". ## Theorem (Every idempotent matrix is a projection) Every idempotent matrix is a projection onto its own column space. #### Exercise: Let $$\mathbf{P} = \left[\begin{array}{cc} 3 & -2 \\ 3 & -2 \end{array} \right], \quad \tilde{\mathbf{P}} = \left[\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & 1/2 \end{array} \right], \quad \text{ and } \quad \mathbf{v} = \left[\begin{array}{cc} 1 \\ 2 \end{array} \right].$$ - Find Pv, $\tilde{P}v$, (I P)v, and $(I \tilde{P})v$. - ② Give the spaces onto which P, \tilde{P} , (I P), and $(I \tilde{P})$ project. - Draw pictures. We like projections that let us orthogonally decompose any vector \mathbf{x} as $$\mathbf{x} = \mathbf{P}\mathbf{x} + (\mathbf{I} - \mathbf{P})\mathbf{x}$$, where $\mathbf{P}\mathbf{x} \cdot (\mathbf{I} - \mathbf{P})\mathbf{x} = 0$. ### Orthogonal projection Let **P** be a projection matrix onto a subspace V. The projection is an *orthogonal* projection if $(\mathbf{I} - \mathbf{P})$ is the projection matrix onto V^{\perp} . Discuss: Which projection matrix corresponds to an orthogonal projection? $$\mathbf{P} = \left[\begin{array}{cc} 3 & -2 \\ 3 & -2 \end{array} \right], \quad \tilde{\mathbf{P}} = \left[\begin{array}{cc} 1/2 & 1/2 \\ 1/2 & 1/2 \end{array} \right].$$ Theorem (Symmetric, idempotent \iff orthogonal projection) A matrix **P** is symmetric and idempotent iff it is an orthogonal projection matrix. Theorem (Uniqueness of orthogonal projection matrices) If P_1 and P_2 are orthogonal projections onto the same subspace then $P_1=P_2$. Projection and idempotent matrices 2 Generalized inverses 3 Least-squares geometry #### Generalized inverse of a matrix A matrix **G** which satisfies AGA = A is called a *generalized inverse* of **A**. ### Theorem (Generalized inverses for solving systems of equations) Suppose $\mathbf{A}\mathbf{x} = \mathbf{b}$ is consistent and let \mathbf{G} be a generalized inverse of \mathbf{A} . Then - **9 Gb** is a solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$. - ② \hat{x} is a solution to Ax = b iff there exists z such that $\hat{x} = Gb + (I GA)z$. See Res A.12 and A.13 of Monahan (2008). ## Theorem (Generalized inverse recipe using block structure) Let **A** be an $m \times n$ matrix with rank r. If we can partition **A** as $$\mathbf{A} = \begin{bmatrix} \mathbf{C} & \mathbf{D} \\ \mathbf{E} & \mathbf{F} \end{bmatrix}, \quad \text{with } \mathbf{C} \ r \times r \ \text{invertible, then} \quad \mathbf{G} = \begin{bmatrix} \mathbf{C}^{-1} & \mathbf{O} \\ \mathbf{O} & \mathbf{O} \end{bmatrix}$$ is a generalized inverse of ${\bf A}$, where the ${\bf O}$ matrices have the necessary dimensions. Similarly, if **F** is $$r \times r$$ invertible, then $\mathbf{G} = \begin{bmatrix} \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{F}^{-1} \end{bmatrix}$ is a gen. inverse of **A**. See Res A.10 and Cor A.3 of Monahan (2008). Make gen. inv. of *any* matrix by permuting rows/columns to get such a partition. See Res A.11 of Monahan (2008). Prove the first result. We sometimes denote the generalized inverse of a matrix \mathbf{A} by \mathbf{A}^- . ## Theorem (Projections constructed with a generalized inverse) Let A^- be a generalized inverse of A. Then - AA⁻ is a projection onto Col A. - $(I A^-A)$ is a projection onto Nul A. See Res A.14 and A.15 of Monahan (2008). Projection and idempotent matrices ② Generalized inverses 3 Least-squares geometry For the remainder of the lecture, let **X** be an $n \times p$ matrix and **y** be a vector in \mathbb{R}^n . We have in mind data coming from a model like $$y = Xb + e$$... but we are not thinking yet about the distribution of **e**. We consider least-squares "estimation" of ${\bf b}$, but no statistics yet—only geometry. ### Least-squares solution A least-squares solution to $\mathbf{X}\mathbf{b} = \mathbf{y}$ is a vector $\hat{\mathbf{b}} \in \mathbb{R}^p$ such that $$\|\mathbf{y} - \mathbf{X}\hat{\mathbf{b}}\| \le \|\mathbf{y} - \mathbf{X}\mathbf{b}\|$$ for all $\mathbf{b} \in \mathbb{R}^p$. ## Theorem (Least-squares solution iff solution to normal equations) - **1** The equation $\mathbf{X}^T \mathbf{X} \mathbf{b} = \mathbf{X}^T \mathbf{y}$ is consistent. See Cor 2.1 and Res 2.3 of Monahan (2008). We call the set of equations $\mathbf{X}^T \mathbf{X} \mathbf{b} = \mathbf{X}^T \mathbf{y}$ the normal equations. Can also use calculus to obtain the normal equations. . . For a real-valued function $Q(\mathbf{x})$ taking vectors in \mathbb{R}^n , define $$rac{\partial}{\partial \mathbf{x}} Q(\mathbf{x}) = \left[egin{array}{c} rac{\partial}{\partial \mathbf{x_1}} Q(\mathbf{x}) \ dots \ rac{\partial}{\partial \mathbf{x}_0} Q(\mathbf{x}) \end{array} ight].$$ ## Theorem (Derivative of linear and quadratic forms) For a vector a and a matrix A, we have $$\frac{\partial}{\partial \mathbf{x}} \mathbf{a}^T \mathbf{x} = \mathbf{a}$$ and $\frac{\partial}{\partial \mathbf{x}} \mathbf{x}^T \mathbf{A} \mathbf{x} = (\mathbf{A} + \mathbf{A}^T) \mathbf{x}$. A least-squares solution of $\mathbf{X}\mathbf{b} = \mathbf{y}$ is a minimizer of $Q(\mathbf{b}) = \|\mathbf{y} - \mathbf{X}\mathbf{b}\|^2$. **Exercise**: Use fact that $\hat{\mathbf{b}}$ minimizes $Q(\mathbf{b})$ iff $\frac{\partial}{\partial \mathbf{b}}Q(\mathbf{b})\Big|_{\mathbf{b}=\hat{\mathbf{b}}}=\mathbf{0}$ to get normal eqs. ## Theorem (Characterization of solutions to the normal equations) The vector $\hat{\mathbf{b}}$ is a solution to $\mathbf{X}^T \mathbf{X} \mathbf{b} = \mathbf{X}^T \mathbf{y}$ iff there exists a vector \mathbf{z} such that $$\hat{\boldsymbol{b}} = (\boldsymbol{X}^T\boldsymbol{X})^-\boldsymbol{X}^T\boldsymbol{y} + (\boldsymbol{I} - (\boldsymbol{X}^T\boldsymbol{X})^-\boldsymbol{X}^T\boldsymbol{X})\boldsymbol{z}.$$ If **X** has full-column rank, then $\hat{\mathbf{b}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$ is the unique solution. **Exercise:** Characterize the set of solutions to the normal equations when $$\mathbf{y} = \left[egin{array}{c} 1 \\ -1 \\ 2 \\ 0 \end{array} ight] \quad ext{ and } \quad \mathbf{X} = \left[egin{array}{cccc} 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{array} ight].$$ These are helper results for constructing the orthogonal projection onto $\mathsf{Col}\,\mathbf{X}$. # Theorem ("Cool result" and generalized inverse of X) - $(\mathbf{X}^T\mathbf{X})^{-}\mathbf{X}^T$ is a generalized inverse of \mathbf{X} . See Res 2.4 and 2.5 of Monahan (2008). ## Theorem (Orthogonal projection onto Col X) The matrix $P_X = X(X^TX)^-X^T$ and the matrix $I - P_X$ are - projections onto Col X and Nul X^T, respectively - invariant to the choice of generalized inverse - symmetric (therefore unique) See Thm 2.4 and Res 2.6 of Monahan (2008). #### Result We have $\mathbf{X}^T \mathbf{X} \mathbf{b} = \mathbf{X}^T \mathbf{y}$ if and only if $\mathbf{X} \mathbf{b} = \mathbf{P}_{\mathbf{X}} \mathbf{y}$. See Res 2.7 of Monahan (2008). #### Sums of squares For $\hat{\mathbf{b}}$ satisfying $\mathbf{X}^T \mathbf{X} \hat{\mathbf{b}} = \mathbf{X}^T \mathbf{y}$ we define the - 2 residuals as $\hat{\mathbf{e}} = \mathbf{y} \hat{\mathbf{y}}$ - **3** total sum of squares (SST) as $\|\mathbf{y}\|^2$ - regression sum of squares (SSR) as $\|\hat{\mathbf{y}}\|^2$ - **5** error sum of squares (SSE) as $\|\hat{\mathbf{e}}\|^2$. ## Theorem (Sum of squares decomposition) We have SST = SSR + SSE, or $\|\mathbf{y}\|^2 = \|\hat{\mathbf{y}}\|^2 + \|\hat{\mathbf{e}}\|^2$. Monahan, J. F. (2008). A primer on linear models. CRC Press.