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Least squares estimation in linear models

Karl B. Gregory
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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Idempotent matrix

A square matrix A is called idempotent if A
2 = A.

Exercise: Verify that these are idempotent matrices:


3 �2
3 �2

� 
1 0
0 1

�
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Projection matrix

A square matrix P is called a projection matrix onto the space V if
1 P is idempotent
2 for any x, Px 2 V
3 for any z 2 V , Pz = z

Sometimes we call projection matrices simply “projections”.

Theorem (Every idempotent matrix is a projection)

Every idempotent matrix is a projection onto its own column space.

Prove the result.
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ii Take any ER

Then PI Col P

iii Take ZE CIP This means Z P for some

s Pz PLP P z

P is a proj matrix onto Col P



Exercise: Let

P =


3 �2
3 �2

�
, P̃ =


1/2 1/2
1/2 1/2

�
, and v =


1
2

�
.

1 Find Pv, P̃v, (I � P)v, and (I � P̃)v.
2 Give the spaces onto which P, P̃, (I � P), and (I � P̃) project.
3 Draw pictures.
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We like projections that let us orthogonally decompose any vector x as

x = Px + (I � P)x, where Px · (I � P)x = 0.

Orthogonal projection

Let P be a projection matrix onto a subspace V . The projection is an orthogonal
projection if (I � P) is the projection matrix onto V?.

Discuss: Which projection matrix corresponds to an orthogonal projection?

P =


3 �2
3 �2

�
, P̃ =


1/2 1/2
1/2 1/2

�
.
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Theorem (Symmetric, idempotent () orthogonal projection)

A matrix P is symmetric and idempotent iff it is an orthogonal projection matrix.

Prove the result.
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Then PIC D PI EPI
So I P Nut P

iii Take E Nut P Then

E D z PE

So I P is a pj onto IP

Suppon P is an orth projection untrix

Then CI P is a projection onto C P

We have IP Nol PT

The tu an

PT D

Since above holds for all we have

PT I P 0

S PT PTP O

PT PTP

where PTP is symmetric so PT must also be symm

P is symmetrie



Theorem (Uniqueness of orthogonal projection matrices)

If P1 and P2 are orthogonal projections onto the same subspace then P1 = P2.

Prove the result.
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We have

CP PFLP Pa PTP PTPa RTP PTR

P P P P P P P P

i
p P P P P Pz

IP
We have

P EV ER

EEE
P HIER

A O

P2P P

Likewise Pax EV EIR

P.EE
Pax ER

PPa P

P Pz P Pa P Pa P Pa 0
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Every matrix has one

For a matrix A a g in

is any matrix G such that
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Generalized inverse of a matrix

A matrix G which satisfies AGA = A is called a generalized inverse of A.

Theorem (Generalized inverses for solving systems of equations)

Suppose Ax = b is consistent and let G be a generalized inverse of A. Then
1 Gb is a solution to Ax = b.
2 x̂ is a solution to Ax = b iff there exists z such that x̂ = Gb + (I � GA)z.

See Res A.12 and A.13 of Monahan (2008).

Prove the results.
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Theorem (Generalized inverse recipe using block structure)

Let A be an m ⇥ n matrix with rank r . If we can partition A as

A =


C D

E F

�
, with C r ⇥ r invertible, then G =


C

�1
O

O O

�

is a generalized inverse of A, where the O matrices have the necessary dimensions.

Similarly, if F is r ⇥ r invertible, then G =


O O

O F
�1

�
is a gen. inverse of A.

See Res A.10 and Cor A.3 of Monahan (2008).

Make gen. inv. of any matrix by permuting rows/columns to get such a partition.
See Res A.11 of Monahan (2008).

Prove the first result.
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We sometimes denote the generalized inverse of a matrix A by A
�.

Theorem (Projections constructed with a generalized inverse)

Let A
� be a generalized inverse of A. Then

1 AA
� is a projection onto ColA.

2 (I � A
�
A) is a projection onto NulA.

See Res A.14 and A.15 of Monahan (2008).

Prove the result.
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For the remainder of the lecture, let X be an n⇥ p matrix and y be a vector in Rn.

We have in mind data coming from a model like

y = Xb + e

. . . but we are not thinking yet about the distribution of e.

We consider least-squares “estimation” of b, but no statistics yet�only geometry.
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Least-squares solution

A least-squares solution to Xb = y is a vector b̂ 2 Rp such that

ky � Xb̂k  ky � Xbk for all b 2 Rp.

Theorem (Least-squares solution iff solution to normal equations)

1 The equation X
T
Xb = X

T
y is consistent.

2 ky � Xb̂k  ky � Xbk for all b 2 Rp if and only if X
T
Xb̂ = X

T
y.

See Cor 2.1 and Res 2.3 of Monahan (2008).

We call the set of equations X
T
Xb = X

T
y the normal equations.

Prove the result.
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XTX Xy has a solution

RI lol XX Col XT

Since Ty Co XT we also have Ty Col ITX
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Can also use calculus to obtain the normal equations. . .

For a real-valued function Q(x) taking vectors in Rn, define

@

@x
Q(x) =

2

64

@
@x1

Q(x)
...

@
@xn

Q(x)

3

75 .

Theorem (Derivative of linear and quadratic forms)

For a vector a and a matrix A, we have

@

@x
a
T
x = a and

@

@x
x
T
Ax = (A + A

T )x.

A least-squares solution of Xb = y is a minimizer of Q(b) = ky � Xbk2.

Exercise: Use fact that b̂ minimizes Q(b) iff @
@bQ(b)

���
b=b̂

= 0 to get normal eqs.
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Theorem (Characterization of solutions to the normal equations)

The vector b̂ is a solution to X
T
Xb = X

T
y iff there exists a vector z such that

b̂ = (XT
X)�X

T
y + (I � (XT

X)�X
T
X)z.

If X has full-column rank, then b̂ = (XT
X)�1

X
T
y is the unique solution.

Prove the result.
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These are helper results for constructing the orthogonal projection onto ColX.

Theorem (“Cool result” and generalized inverse of X)

1 X
T
XA = X

T
XB () XA = XB.

2 (XT
X)�X

T is a generalized inverse of X.

See Res 2.4 and 2.5 of Monahan (2008).

Prove the results.
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Exercise: Characterize the set of solutions to the normal equations when

y =

2

664

1
�1

2
0

3

775 and X =

2

664

1 1 0 0
1 0 1 0
1 0 1 0
0 0 1 1

3

775 .
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Theorem (Orthogonal projection onto ColX)

The matrix PX = X(XT
X)�X

T and the matrix I � PX are
1 projections onto ColX and NulXT , respectively
2 invariant to the choice of generalized inverse
3 symmetric (therefore unique)

See Thm 2.4 and Res 2.6 of Monahan (2008).

Prove the results.
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Result

We have X
T
Xb = X

T
y if and only if Xb = PXy.

See Res 2.7 of Monahan (2008).

Prove the result.
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Sums of squares

For b̂ satisfying X
T
Xb̂ = X

T
y we define the

1 fitted values as ŷ = Xb̂

2 residuals as ê = y � ŷ

3 total sum of squares (SST) as kyk2

4 regression sum of squares (SSR) as kŷk2

5 error sum of squares (SSE) as kêk2.

Theorem (Sum of squares decomposition)

We have SST = SSR+SSE, or kyk2 = kŷk2 + kêk2.

Prove the result.
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Monahan, J. F. (2008). A primer on linear models. CRC Press.
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