

STAT 714 fa 2025 Final Exam

1. Let $Y_t = \beta_0 + \beta_1 t + \varepsilon_t$ for $t = -T, \dots, T$, where $\varepsilon_{-T}, \dots, \varepsilon_T$ are independent $\mathcal{N}(0, 1)$ random variables.

- (a) Give \mathbf{y} , \mathbf{X} , \mathbf{b} , and \mathbf{e} such that the model can be expressed as $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{e}$.
- (b) Give the matrix $\mathbf{X}^T \mathbf{X}$. Hint: $\sum_{i=1}^n i^2 = n(2n + 1)(n + 1)/6$.
- (c) Give the least squares estimator $\hat{\mathbf{b}}$ of \mathbf{b} .
- (d) Give the joint distribution of the entries $\hat{\beta}_0$ and $\hat{\beta}_1$ of $\hat{\mathbf{b}}$.
- (e) Give \mathbf{K} and \mathbf{m} such that $\mathbf{K}^T \mathbf{b} = \mathbf{m}$ if and only if $\beta_1 = 0$.
- (f) Under your choice of \mathbf{K} and \mathbf{m} , give an expression for the quantity

$$W = (\mathbf{K}^T \hat{\mathbf{b}} - \mathbf{m})^T [\mathbf{K}^T (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{K}]^{-1} (\mathbf{K}^T \hat{\mathbf{b}} - \mathbf{m})$$

in terms of Y_{-T}, \dots, Y_T .

- (g) State exactly the distribution of W .
- (h) Propose a size- α test of $H_0: \beta_1 = 0$.

2. Let V and W be vector spaces. Show the following:

- (a) $V \subset W \implies W^\perp \subset V^\perp$.
- (b) $W \cap W^\perp = \{\mathbf{0}\}$.

3. (a) Let λ be an eigenvalue of \mathbf{A} . Show that if \mathbf{A} is idempotent then λ is equal to 0 or 1.

(b) Let \mathbf{A} be an $n \times n$ symmetric, idempotent matrix with rank s . Argue that there exists an $n \times s$ matrix \mathbf{G} such that $\mathbf{A} = \mathbf{G}\mathbf{G}^T$ and $\mathbf{G}^T \mathbf{G} = \mathbf{I}_s$.

4. Let $Y_{ij} = \mu + A_i + \sigma_i \varepsilon_{ij}$ for $i = 1, \dots, a$ and $j = 1, \dots, n$, where $A_1, \dots, A_a \stackrel{\text{ind}}{\sim} \mathcal{N}(0, \sigma_A^2)$ and $\varepsilon_{ij} \stackrel{\text{ind}}{\sim} \mathcal{N}(0, 1)$.

- (a) Give \mathbf{y} , \mathbf{X} , \mathbf{b} , \mathbf{Z} , \mathbf{u} , and \mathbf{e} such that the model can be expressed as $\mathbf{y} = \mathbf{X}\mathbf{b} + \mathbf{Z}\mathbf{u} + \mathbf{e}$.
- (b) Give the matrix $\mathbf{V} = \text{Cov } \mathbf{y}$.
- (c) Give the matrix \mathbf{V}^{-1} , using $(a\mathbf{J}_n + b\mathbf{I}_n)^{-1} = \frac{1}{b}(\mathbf{I}_n - \frac{a}{b+na}\mathbf{J}_n)$.
- (d) Give the generalized least-squares estimator $\hat{\mu}_{\text{gls}}$ for μ .
- (e) Give the BLUP for $v_i = \mu + A_i$, using the fact that the BLUP for $v = \mathbf{c}^T \mathbf{b} + \mathbf{d}^T \mathbf{u}$ is given by $\tilde{v} = \mathbf{c}^T \hat{\mathbf{b}}_{\text{gls}} + \mathbf{d}^T \mathbf{G} \mathbf{Z}^T \mathbf{V}^{-1} (\mathbf{y} - \mathbf{X} \hat{\mathbf{b}}_{\text{gls}})$.