STAT 714 hw 2

Dimension of a subspace, bases, rank, orthogonal complements, orthogonal projections

- 1. Let W be a subspace of \mathbb{R}^n with an orthogonal basis $\{\mathbf{w}_1, \dots, \mathbf{w}_p\}$ and let $\{\mathbf{v}_1, \dots, \mathbf{v}_q\}$ be an orthogonal basis for W^{\perp} .
 - (a) Show that the set $\{\mathbf{w}_1, \dots, \mathbf{w}_p, \mathbf{v}_1, \dots, \mathbf{v}_q\}$ is linearly independent.
 - (b) State whether $\operatorname{Span}\{\mathbf{w}_1,\ldots,\mathbf{w}_p,\mathbf{v}_1,\ldots,\mathbf{v}_q\}=\mathbb{R}^n$. Prove your statement.
 - (c) Show that p + q = n.
 - (d) Show whether the statement is true or not: For every $\mathbf{x} \in \mathbb{R}^n$, we have $\mathbf{x} \in W$ or $\mathbf{x} \in W^{\perp}$.
- 2. Let $\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_p]$, where $\{\mathbf{u}_1, \dots, \mathbf{u}_p\}$ is an orthonormal basis for a subspace W of \mathbb{R}^n . Show that the orthogonal projection of \mathbf{y} onto W is given by $\hat{\mathbf{y}} = \mathbf{U}\mathbf{U}^T\mathbf{y}$.
- 3. Let $\mathbf{y} = (1, 1, 1)^T$ and let $\mathbf{v}_1 = (2, -5, 1)^T$ and $\mathbf{v}_2 = (4, -1, 2)^T$.
 - (a) Produce an orthonormal basis for $Span\{v_1, v_2\}$.
 - (b) Give the orthogonal projection $\hat{\mathbf{y}}$ of \mathbf{y} onto $\mathrm{Span}\{\mathbf{v}_1,\mathbf{v}_2\}$.
- 4. Show that if W and V are subspaces of \mathbb{R}^n such that $W \subset V$, then dim $W \leq \dim V$.
- 5. Let $\mathbf{A} = \sum_{k=1}^r \mathbf{u}_k \mathbf{v}_k^T$ for some vectors $\mathbf{u}_1, \dots, \mathbf{u}_r \in \mathbb{R}^m$ and $\mathbf{v}_1, \dots, \mathbf{v}_r \in \mathbb{R}^n$. Show that rank $\mathbf{A} \leq r$.
- 6. Consider the linear model given by

$$Y_{ij} = \mu + \alpha_i + \beta_i x_{ij} + \varepsilon_{ij}, \quad i = 1, 2, \quad j = 1, 2, 3,$$

with $x_{ij} = j$ for i = 1, 2 and j = 1, 2, 3, and where the ε_{ij} are Normal $(0, \sigma^2)$ random variables.

- (a) Put the model equations in matrix form $\mathbf{y} = \mathbf{X}\mathbf{b} + \boldsymbol{\varepsilon}$.
- (b) Give a basis for $\operatorname{Col} \mathbf{X}$.
- (c) Give rank \mathbf{X} .
- (d) Give $\dim \operatorname{Nul} \mathbf{X}$.
- (e) Give $\dim(\operatorname{Col} \mathbf{X})^{\perp}$.
- (f) Give a basis for the orthogonal complement of $\operatorname{Col} \mathbf{X}$.
- (g) Give the orthogonal projection of the vector $\mathbf{y} = (5, 6, 8, 4, 3, 1)^T$ onto Nul \mathbf{X}^T .
- (h) Give the orthogonal projection of the same ${\bf y}$ onto Col ${\bf X}$.
- 7. Let $\mathbf{y} \in \mathbb{R}^n$ and $\mathbf{X} \in \mathbb{R}^{n \times (n-1)}$ such that $\mathbf{1}^T \mathbf{y} = 0$ and $\mathbf{X}^T \mathbf{1} = \mathbf{0}$, where $\mathbf{1}$ is an $n \times 1$ vector of ones, and suppose \mathbf{X} has full column rank. Show that $\mathbf{y} \in \operatorname{Col} \mathbf{X}$.