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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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These notes include scanned excerpts from Lay (2003):
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1 Vectors in Rn

2 Matrices in Rm×n

3 Inverse of a matrix
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A vector x ∈ Rn is an n × 1 column matrix of real numbers

x =


x1
x2
...
xn

 .

Sums and scalar multiples of vectors
Given x, y ∈ Rn and c ∈ R, the sum x + y and the scalar multiple of x by c are

x + y =


x1 + y1
x2 + y2

...
xn + yn

 and cx =


cx1
cx2
...

cxn

 .
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No surprises here:
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Inner product of vectors
The inner product of u, v ∈ Rn is defined as u · v = u1v1 + · · ·+ unvn.

No surprises here either:
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Length or Euclidean norm of a vector
Let u and v be vectors in Rn.

1 The length or Euclidean norm of v is defined as ‖v‖ =
√

v · v.
2 We call v a unit vector if ‖v‖ = 1.
3 We say u and v are orthogonal if u · v = 0.
4 The distance between v and u is ‖v − u‖.
5 The angle between v and u is cos−1( u·v

‖u‖‖v‖ ).

Exercises: Let

u =

[
1√
3

]
, v =

[
1
0

]
, w =

[ √
3/2
−1/2

]
.

1 Which pairs of vectors are orthogonal?
2 Which vectors are unit vectors?
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Pythagorean theorem, Cauchy-Schwarz and Triangle inequalities.
Let u and v be vectors in Rn.

1 Pythagorean theorem: u and v are orthogonal iff ‖u + v‖2 = ‖u‖2 + ‖v‖2.
2 Cauchy-Schwarz inequality : |u · v| ≤ ‖u‖‖v‖
3 Triangle inequality : ‖u + v‖ ≤ ‖u‖+ ‖v‖

Prove the results.
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Orthogonal and orthonormal sets of vectors
Let {v1, . . . , vp} be a set of vectors in R.

1 We call {v1, . . . , vp} an orthogonal set of vectors if vi · vj = 0 for all i 6= j .
2 If in addition ‖vi‖ = 1 for i = 1, . . . , n, we call it an orthonormal set.

Example: The elementary vectors

e1 =


1
0
...
0
0

 , e2 =


0
1
...
0
0

 , . . . , en−1 =


0
0
...
1
0

 , en =


0
0
...
0
1


in Rn make an orthonormal set of vectors.
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Linear combination
Given vectors v1, . . . , vp ∈ Rn and scalars c1, . . . , cp ∈ R, the vector

y = c1v1 + · · ·+ cpvp

is a linear combination of v1, . . . , vp with weights c1, . . . , cp.

Example: We often decompose a vector as a linear combination of vectors, e.g.[
3
4

]
= 3

[
1
0

]
+ 4

[
0
1

]
.
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1 Vectors in Rn

2 Matrices in Rm×n

3 Inverse of a matrix
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A matrix A ∈ Rm×n is a table of numbers A =

 a11 . . . a1n
...

. . .
...

am1 . . . amn

 .

Sum of two matrices
Given A,B ∈ Rn×m and c ∈ R, A + B and the scalar multiple of A by c are

A + B =

 a11 + b11 . . . a1n + b1n
...

. . .
...

am1 + bm1 . . . amn + bmn

 and cA =

 ca11 . . . ca1n
...

. . .
...

cam1 . . . camn

 .

Extract rows, columns, or entries of a matrix A with

rowi (A) = [ai1 . . . ain], colj(A) =

 a1j
...

amj

 , (A)ij = aij .
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Again no surprises:
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Product of a matrix and a vector
If A is an m × n matrix with columns a1, . . . , an and x ∈ Rn, then

Ax = x1a1 + · · ·+ xnan.

That is, Ax is a linear combination of the columns of A with weights from x.

So (Ax)i = rowi (A)x =
∑n

j=1 aijxj , where (Ax)i denotes entry i of Ax.

Exercise: Give Ax, where

A =

 1 1 0
2 1 2
1 1 0

 and x =

 1
2
−1

 .
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Identity matrix
For each integer n ≥ 1, the n × n identity matrix In is the n × n matrix with
diagonal entries equal to 1 and all other entries equal to 0.

So In = [e1 . . . en], where e1, . . . , en are the elementary basis vectors.

Exercise: For any x ∈ Rn, show that Inx = x.
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Product of two matrices
If A is an m × n matrix and B is an n × p matrix with columns b1, . . . ,bp, then
the product AB is the m × p matrix with columns Ab1, . . . ,Abp.

Above is the definition of AB. Below are some helper rules one can derive.

Theorem (Row-column, column-row rules for matrix multiplication)
If A is m × n and B is n × p, then we have the two rules

1 Row-column: (AB)ij = rowi (A) colj(B) =
∑n

k=1 aikbkj .
2 Column-row: AB = col1(A) row1(B) + · · ·+ coln(A) rown(B).

Exercise: Give the matrix product AB, where

A =

[
1 1 2
2 0 1

]
, B =

 1 1 0
2 1 2
1 1 0

 .
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More unsurprising facts:
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Transpose of a matrix
The transpose of an m × n matrix A, denoted AT , is the n ×m matrix of which
the rows are the columns of A.

One little surprise. . .

Prove result d.
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Inner and outer products with the transpose
Let u and v be two vectors in Rn.

1 We can write the inner product of u and v as u · v = uTv.
2 The outer product of u and v is defined as the n × n matrix uvT .

Exercise:
1 Compute inner and outer product of u = (1, 2, 3)T and v = (1, 0,−1)T .
2 Let X = [x1 . . . xn]T be an n × p matrix. Give XTX.
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Multiplication of partitioned matrices
Partitioned matrices can be multiplied with the row-column rule as though the
block entries were scalars.

Exercise: Find AB, where these are the partitioned matrices
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3 Inverse of a matrix
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Invertibility of a matrix
An n × n matrix A is invertible if there is an n × n matrix C such that

CA = In and AC = In.

In this case C is the unique inverse of A, which we denote by A−1.

A matrix which is not invertible is called a singular matrix .

An invertible matrix is called a nonsingular matrix .
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Theorem (Some properties of the inverse)
Let A and B be invertible n × n matrices. Then

1 A−1 is invertible with (A−1)−1 = A.
2 AB is invertible with (AB)−1 = B−1A−1.
3 AT is invertible and (AT )−1 = (A−1)T .

Prove the above results.
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To see if we have the inverse, we only need to check pre- or post-multiplication.

Theorem (The left inverse is the right inverse)
If A is n × n and there exists a matrix D such that DA = In, then AD = In.

(Prove later)
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Theorem (Inverse of a 2× 2 matrix)

Let A =

[
a b
c d

]
. If ad − bc 6= 0, then A is invertible and

A−1 =
1

ad − bc

[
d −b
−c a

]
.

If ad − bc = 0 then A is not invertible.

Exercise: Find the inverse (if it exists) of each of the matrices

1

[
5 7
−3 −6

]
2

[
−4 6
6 −9

]
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