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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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These notes include scanned excerpts from Lay (2003):
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Vector space

A vector space is a nonempty set V of objects, called vectors, on which are
defined two operations, called addition and multiplication by scalars, subject to
these rules: For all u, v, and w in V and for all scalars c and d we must have

These imply the additional facts (i) 0u = 0, (ii) c0 = 0, and (iii) �u = (�1)u.

We will work in the vector space Rn.
Karl B. Gregory (U. of South Carolina) STAT 714 fa 2025 linear algebra review 3/6 4 / 31



Subspace of a vector space

A subspace of a vector space V is a subset H ⇢ V with three properties
1 The zero vector of V is in H.
2 For each u, v 2 H, u + v 2 H. (Closure under vector addition)
3 For each u 2 H and c 2 R, cu 2 H. (Closure under multiplication by scalars)

Exercise: For each subset of R2, determine if it is a subspace of R2:

1 H1 =

⇢
a

b

�
: a � 0, b 2 R

�

2 H2 =

⇢
x

y

�
: y = 1 + x , x 2 R

�

3 H3 =

⇢
a


1
1

�
+ b


1

�1

�
: a, b 2 R

�
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A way to describe a subspace: the set of all linear combinations of a set of vectors.

Subspace of Rn
spanned by a set of vectors

For v1, . . . , vp 2 Rn, denote the set of all linear combinations of v1, . . . , vp by

Span{v1, . . . , vp} = {y 2 Rn : y = c1v1 + · · ·+ cpvp for some c1, . . . , cp 2 R}.

We call this set the subspace of Rn spanned by v1, . . . , vp.

Exercise: Depict Span
⇢

1
1

�
,


1

�1

��
.
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Theorem (The span of a set of vectors makes a subspace)

If v1, . . . , vp are in a vector space V , then Span{v1, . . . , vp} is a subspace of V .

Exercise: Prove the result.
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Exercise: Let H = {(a� 3b, b � a, a, b)T : a, b 2 R}. Check whether H is a
subspace of R4. Hint: Write H as the span of a set of vectors.

Karl B. Gregory (U. of South Carolina) STAT 714 fa 2025 linear algebra review 3/6 8 / 31

It
melden

H ab ER

af
b a bar

S 3H 1



Exercise: For the vectors

v1 =

2

4
1
1
1

3

5 , v2 =

2

4
1
2
3

3

5 , v3 =

2

4
0
1
2

3

5 ,

check whether Span{v1, v2, v3} = Span{v1, v2}.
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Null space and column space of a matrix

Let A be an m ⇥ n matrix. Then
1 The null space NulA of A is the set of all solutions to Ax = 0.
2 The column space ColA of A = [a1, . . . , an] is Span{a1, . . . , an}.
3 The row space RowA of A = [r1, . . . , rm]T is Span{r1, . . . , rm}.

We can also write ColA = {y 2 Rm : y = Ax for some x 2 Rn}.

Note that RowA = ColAT .

Exercises:
1 Show that the null space of an m ⇥ n matrix A is a subspace of Rn.
2 Show that the column space of an m ⇥ n matrix A is a subspace of Rm.
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Exercise: Give the null space and column space of the matrix

A =

2

4
1 1 0
1 2 1
1 3 2

3

5

Write each as the span of a set of vectors.
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Basis for a vector space

Let H be a subsp. of a vec. sp. V and B = {b1, . . . ,bp} a set of vectors in V . If
1 B is a linearly independent set, and
2 H = Span{b1, . . . ,bp},

then B is called a basis for H.

Example: The columns of the n ⇥ n identity matrix, that is the set of vectors

e1 =

2

6664

1
0
...
0

3

7775
, e2 =

2

6664

0
1
...
0

3

7775
, . . . , en =

2

6664

0
0
...
1

3

7775

is called the standard basis for Rn.
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Exercise: Check the following:

1 Is the set of vectors

8
<

:

2

4
1
1
1

3

5 ,

2

4
1
2
3

3

5 ,

2

4
0
1
2

3

5

9
=

; a basis for R3?

2 Do the columns of the matrix


1 1
1 �1

�
form a basis for R2?
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Spanning sets can have “extra”, unneeded vectors in them:

Theorem (Spanning set theorem)

Let {v1, . . . , vp} be a set of vectors in V and let H = Span{v1, . . . , vp}.
1 If any vector in {v1, . . . , vp} is a linear combination of the others, it can be

removed, and the resulting set of vectors will still span H.
2 If H 6= {0}, then some subset of {v1, . . . , vp} is a basis for H.

Prove the result.
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Theorem (Find a basis for the column space of a matrix)

1 If a matrix A can be transformed to B with EROs then NulA = NulB.
2 The pivot columns of a matrix A form a basis for ColA.

Discuss the result.

Exercise: Construct a basis for Span{v1, v2, v3, v4}, where

v1 =

2

4
1

�3
4

3

5 , v2 =

2

4
6
2

�1

3

5 , v3 =

2

4
2

�2
3

3

5 , v4 =

2

4
�4
�8

9

3

5 .
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Theorem (Unique representation theorem)

Let B = {b1, . . . ,bn} be a basis for a vector space V . Then for each x in V , there
exists a unique set of scalars c1, . . . , cn such that

x = c1b1 + · · ·+ cnbn.

Coordinates with respect to a basis

For the above we may write x = [b1 · · ·bn][x]B, where [x]B = (c1, . . . , cn)T is the
coordinate vector of x relative to the basis B.

Prove the unique representation theorem.
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The following results allow us to define the dimension of a vector space.

Theorem (Dimension theorem)

Let V be a vector space and let B = {b1, . . . ,bn} be a basis for V .
1 Any set of more than n vectors in V is linearly dependent.
2 Every basis for V consists of exactly n vectors.

Prove the dimension theorem.
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Dimension of a vector space

Let V be a vector space.
1 If V is spanned by a finite set, then V is finite-dimensional .
2 If V is not spanned by any finite set, then V is infinite-dimensional .
3 The dimension dimV of V is the number of vectors in a basis for V .
4 If V = {0} then we define dimV = 0

Exercise: Give the dimension of the space Span

8
<

:

2

4
1
1
1

3

5 ,

2

4
1
2
3

3

5 ,

2

4
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;.
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To summarize some of the foregoing results:

How do you know you have a basis?

For a p-dimensional vector space V :
1 Any set of p linearly independent vectors in V is a basis for V .
2 Any set of p vectors that spans V is a basis for V .
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Result (Relating dimensions to Ax = 0 and the echelon form)

1 dimNulA is the number of free variables in Ax = 0.
2 dimColA is the number of pivot columns in A.

Implies that dimColA and dimNulA add up to the number of columns of A.

Discuss results from an echelon form perspective.

Exercise: Give the dimension of the column space and the null space of the matrix
2

4
�3 6 �1 1 �7

1 �2 2 3 �1
2 �4 5 8 �4

3

5
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Result (Basis for row space of a matrix)

If A and B are row-equivalent (can do EROs to transform A into B) then
1 RowA = RowB.
2 The nonzero rows of B form a basis for RowA as well as for RowB.

Discuss results.

Exercise: Find bases for the row space, column space, and null space of the matrix
2

664

�2 �5 8 0 �17
1 3 �5 1 5
3 11 �19 7 1
1 7 �13 5 �3

3

775 ⇠

2

664

1 0 1 0 1
0 1 �2 0 3
0 0 0 1 �5
0 0 0 0 0

3

775
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Rank of a matrix

The rank of a matrix is the dimension of its col. space. Write rankA = dimColA.

Theorem (Rank Theorem)

Let A be an m ⇥ n matrix. Then
1 rankA = rankAT

2 rankA + dimNulA = n

A matrix has full-column rank if its rank is equal to its number of columns.

Discuss echelon-form arguments for the rank theorem.
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Theorem (cf. Results A.1 and A.2 in Monahan (2008))

1 We have ColA ⇢ ColB if and only if A = BC for some matrix C.
2 rank(AB)  min{rankA, rankB}.
3 If A has full-column rank, then NulA = {0}.

Prove the above results.
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Theorem (cf. Result A.8, Cor A.1, A.2, and Lemma A.1 of Monahan)

1 If Ax + b = 0 for all x 2 Rn then A = 0 and b = 0.
2 If Bx = Cx for all x 2 Rn then B = C.
3 If A has full-column rank and AB = AC then B = C.
4 If CTC = 0 then C = 0.

Prove the above results.
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