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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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These notes include scanned excerpts from Lay (2003):
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1 Orthogonal matrices

2 Orthogonal subspaces

3 Orthogonal projections

4 Gram-Schmidt orthogonalization
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Orthogonal and orthonormal sets of vectors

A set of vectors {v1, . . . , vp} ∈ Rn is an orthogonal set if vi · vj = 0 for all i 6= j .

If in addition ‖vi‖ = 1 for i = 1, . . . , n, the set is an orthonormal set.

Example: The elementary vectors

e1 =


1
0
...
0
0

 , e2 =


0
1
...
0
0

 , . . . , en−1 =


0
0
...
1
0

 , en =


0
0
...
0
1


in Rn are an orthonormal set; moreover Span{e1, . . . , en} = Rn.
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Result (Orthonormal columns)
An m × n matrix U has orthonormal columns if and only if UTU = I.

Prove the result.

Exercise: Check if these matrices have orthonormal columns:

C =

[
1/
√
2 1/

√
2

1/
√
2 −1/

√
2

]
D =

[
1 1/

√
2

0 1/
√
2

]
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Theorem (Results for matrices with orthonormal columns)
Let U be an m × n matrix with orthonormal columns and let x, y ∈ Rn. Then

1 ‖Ux‖ = ‖x‖
2 (Ux) ·(Uy) = x · y
3 (Ux) ·(Uy) = 0 ⇐⇒ x · y = 0

Exercise: Prove the above results.

Karl B. Gregory (U. of South Carolina) STAT 714 fa 2025 linear algebra review 4/6 6 / 26



Orthogonal matrix
An orthogonal matrix is a square invertible matrix U such that U−1 = UT .

If U is n × n with orthonormal columns, we have UTU = In and UUT = In
(since the left inverse is the right inverse).

So square matrices with orthonormal columns are called orthogonal matrices.

Karl B. Gregory (U. of South Carolina) STAT 714 fa 2025 linear algebra review 4/6 7 / 26



1 Orthogonal matrices

2 Orthogonal subspaces

3 Orthogonal projections

4 Gram-Schmidt orthogonalization
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Orthogonal complement
Let W be a subspace of Rn.

If z · x = 0 for all x ∈W , we say z is orthogonal to W .
The orthogonal complement of W is the set of all such vectors z.

Denote the orthogonal complement of a subspace W as W⊥.

Theorem (Results about orthogonal complements)
Let W be a subspace of Rn. Then:

1 A vector x is in W⊥ iff x is orthogonal to every vector in a set that spans W .
2 W⊥ is a subspace of Rn.

Prove the result.
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Exercise: Find the orthogonal complements of these subspaces:

1 W1 = Span

{[
1
1

]}
2 W2 = Span


 0

1
1

 ,

 1
0
0


Draw pictures.
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The next result tells us how to find an orthogonal complement.

Theorem (Orthogonal complement of column and row space)
Let A be an m × n matrix. Then (ColA)⊥ = NulAT and (RowA)⊥ = NulA.

Prove the result.
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Exercise: Find the orthogonal complement of Span


 1

1
1

 ,

 1
1
0


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Theorem (Chopping result. Cf. Monahan (2008) Result A.6)
For two vector spaces W and V , W ⊂ V implies V⊥ ⊂W⊥.
As a consequence, we have additionally W = V ⇐⇒ W⊥ = V⊥.

Prove the result.
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Theorem (Lemma 2.1 and Results 2.2 and 2.4 of Monahan)
For an n × p matrix X, we have

1 NulXTX = NulX
2 ColXTX = ColXT

3 XTXA = XTXB ⇐⇒ XA = XB.

Prove the results.
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Theorem (An orthogonal set of nonzero vectors is a basis)
If {u1, . . . ,up} is an orthogonal set of nonzero vectors in Rn, then it is linearly
independent and therefore a basis for Span{u1, . . . ,up}.

An orthogonal basis is a basis which is an orthogonal set.

Prove the result.
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Example: Here are two bases for the same space—one orthogonal, one not:

Span

{[
1
1

]
,

[
1
0

]}
= Span

{[
1
0

]
,

[
0
1

]}
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How to find a vector’s “coordinates” with respect to an orthogonal basis:

Result (Find a vector’s coordinates wrt an orthogonal basis)
Let {u1, . . . ,up} be an orth. basis for a subspace W of Rn. Then for each y ∈W ,

y = c1u1 + · · ·+ cpup, where cj =
y ·uj

uj ·uj
, j = 1, . . . , p.

Prove the result.
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Exercise: Find the coefficients to construct y =

[
1
2

]
from the orthogonal basis

{[ √
3/2
1/2

]
,

[
−1/2√
3/2

]}
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1 Orthogonal matrices

2 Orthogonal subspaces

3 Orthogonal projections

4 Gram-Schmidt orthogonalization
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Theorem (Orthogonal decomposition theorem)
Let W be a subspace of Rn. Then we can decompose any y ∈ Rn uniquely as

y = ŷ + ê, where ŷ ∈W and ê ∈W⊥.

Moreover, for any orthogonal basis {u1, . . . ,up} for W , we have

ŷ =
y ·u1

u1 ·u1
u1 + · · ·+

y ·up

up ·up
up and ê = y − ŷ.

The vector ŷ is called the orthogonal projection of y onto W , denoted by projW y.

Note that if y ∈W then projW y = y.

Prove the theorem.
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Theorem (Best approximation theorem)
Let W be a subspace of Rn, y any vector in Rn, and ŷ = projW y. Then

‖y − ŷ‖ < ‖y − v‖ for all v ∈W distinct from ŷ.

Prove the result.
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Exercise: Let v =

[
1
1

]
and y =

[
1
2

]
. Give the orthogonal projection ŷ of y on

Span{v}. Draw pictures! Check orthogonality of y − ŷ and y.
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1 Orthogonal matrices

2 Orthogonal subspaces

3 Orthogonal projections

4 Gram-Schmidt orthogonalization
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The Gram-Schmidt process turns a basis into an orthogonal basis.

Prove the result.
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Exercise: Use the Gram-Schmidt process to orthogonalize the basis


1
1
1
1

 ,


0
1
1
1

 ,


0
0
1
1


 .
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