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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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These notes include scanned excerpts from Lay (2003):
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1 Eigenvalues and eigenvectors

2 Determinants

3 Diagonalization
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Eigenvectors and eigenvalues
Let A be an n ⇥ n matrix.

1 An eigenvector of A is a nonzero vec. x such that Ax = �x for some scalar �.
2 A scalar � is an eigenvector of A if there is a nontrivial solution to Ax = �x.

Such an x is called an eigenvector corresponding to �.

Interpretation: The magnitudes of the eigenvalues of A represent the amount by
which A stretches or shrinks certain vectors.
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Exercise: For A =


1 6
5 2

�
check whether

1 the vectors u =


2
2

�
and v =


3
�2

�
are eigenvectors.

2 the values �4 and 6 are eigenvalues.
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Is 4 an eigenvalue of A

Is there a nonzero solution to this
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A 4
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5 6
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write
5 6
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5 6

1 1
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free V2
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Eigenspaces
If � is an eigenvalue of A, the set of all solutions to (A � �In)x = 0 is called the
eigenspace of A corresponding to �.

Exercise: An eigenvalue of the matrix below is 2. Find a basis for the
corresponding eigenspace:

A =

2

4
4 �1 6
2 1 6
2 �1 8

3

5
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A E

2 16

2
1 6

102 1 6 0 0 0

2 1

61
0 0 0 0

2x 6 3 0

free
free

3 X2
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Theorem (Linear independence of eigenspaces)
If v1, . . . , vr are eigenvectors corresponding to distinct eigenvalues �1, . . . ,�r of a
matrix, then {v1, . . . , vr} is linearly independent

Prove the result.
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Xp C Y t.at CpXp for some Ci Cp

Writ
Aypt PHYPH

7pm c Y i an Ip

Als

Ayp A c Cp p

c Ay op Alp
C A Y t Cp Xp p

Apt C Y t apEp C A K t t CpAp Ip

C Apt 7 Y t Cp 7pm Ap Ip 0

1 c

Iff Cp

because Ip is in indy

c Cp o

Recall that Ipt C Y t.it Es Ip So this means



Prove the first of the above results.
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Then then is a nonzero I such that

Axoifele
If A invertible A I

I if A invertibles Aziz has only

the trivial solution so if AI O

for some nonzero the A is

not invertible

Assum A net invertibel

Show Ax o I for some nonzero

has fewer than n pivot colons

to it has more than I solution



1 Eigenvalues and eigenvectors

2 Determinants

3 Diagonalization
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Recall det


a b
c d

�
= ad � bc .

For larger matrices the determinant is defined as follows:

Definition of determinant by co-factor expansion
Let A be an n ⇥ n matrix with i , j entry aij and let A(i, j) be the matrix A with
row i and column j removed. Then, for i , j = 1, . . . , n, define the (i , j)-cofactor as

Cij = (�1)i+j detA(i, j).

Then for any i and j we have detA =
Pn

k=1 aikCik =
Pn

k=1 akjCkj .

Often write detA as |A|.

This requires over n! multiplications, so computers use a different method.
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Exercise: Compute the determinant of

A =

2

4
1 5 0
2 4 �1
0 �2 0

3

5 .
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The determinant and cofactors give a formula for a matrix inverse:

Theorem (An inverse formula using cofactors)
If A is an invertible n ⇥ n matrix, we have

A�1 =
1

detA

2

6664

C11 C21 . . . Cn1
C12 C22 . . . Cn2
...

...
...

C1n C2n . . . Cnn

3

7775

Exercise: Compute the inverse of the matrix on the previous slide.
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Theorem (Some properties of determinants)
Let A and B be n ⇥ n matrices. We have

1 A is invertible if and only if detA 6= 0.
2 detAT = detA
3 detAB = (detA)(detB)

Discuss above results.
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Theorem (Finding eigenvalues with the characteristic equation)
A scalar � is an eigenvalue of an n ⇥ n matrix A iff � satisfies det(A � �I) = 0.

The equation det(A � �I) = 0 is called the characteristic equation.

RHS an n-degree polynomial, which has n roots (some roots may be complex).

Prove the above result.

Exercise: Find the eigenvalues of the matrix

A =

2

4
1 3 3

�3 �5 �3
3 3 1

3

5 .
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E A an eigenvalue of A
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1 AI 11
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1 7 3 3
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3 3 1 7

1 a
s a 3

3 1

3 3 3
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Theorem (Eigenvalues of a triangular matrix)
For a triangular matrix

1 the determinant is the product of the entries on the main diagonal.
2 the eigenvalues are the entries on the main diagonal.

Prove the results.
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The trace of a square matrix A, denoted tr(A), is the sum of its diagonal entries.

Theorem (Properties of the trace)
For any matrices A and B, we have

1 tr(AB) = tr(BA).
2 tr(ATA) =

P
i

P
j a

2
ij , where aij are the entries of A.

Prove in hw 3.
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The function pA(t) = det(tI � A) is called the characteristic polynomial of A.

Theorem (Expansion of characteristic polynomial)
The characteristic polynomial of an n ⇥ n matrix A has the terms

pA(t) = tn � (trA)tn�1 + · · ·+ (�1)n detA.

Exercise: For an n ⇥ n matrix A with eigenvalues �1, . . . ,�n, use above to show
1 trA =

Pn
i=1 �i

2 detA =
Qn

i=1 �i

Karl B. Gregory (U. of South Carolina) STAT 714 fa 2025 linear algebra review 5/6 17 / 22





Theorem (Further properties of the determinant)
1 |A�1| = 1/|A|
2 |cA| = cn|A| if A is n ⇥ n

3

��� A B
C D

��� = |A||D � CA�1B| = |D||A � BD�1C|.

See Res A.18 of Monahan (2008).
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A square matrix A is diagonalizable if A = PDP�1 with P invertible, D diagonal.

Theorem (Sufficient and necessary conditions for diagonalizability)
An n ⇥ n matrix A can be written A = PDP�1 with D diag. and P invertible iff

1 the columns of P are n linearly independent eigenvectors of A, and
2 the diagonal entries of D are the corresponding eigenvalues of A.

Prove the result.
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Exercise: If possible, diagonalize the matrix

A =

2

4
1 3 3

�3 �5 �3
3 3 1

3

5 .

Steps:
1 Find the eigenvalues of A.
2 Find three linearly indep. eigenvectors (if not possible, A not diagonalizable).
3 Give (if possible) the diagonalization A = PDP�1.
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