
STAT 720 sp 2019 Lec 04
Karl Gregory
1/24/2019

Forecasting for time series

Given a length-n realization X1, . . . , Xn of a stationary time series {Xt, t ∈ Z}, we consider predicting the
value of Xn+h, for h ≥ 1, based on the values X1, . . . , Xn. Specifically, we will consider a predictor PnXn+h
of Xn+h which is linear in the values X1, . . . , Xn, taking the form

PnXn+h = a0 +
n∑
i=1

aiXn+1−i.

Minimizing the expected squared prediction error

A desirable property of a predictor is that the expected or mean squared prediction error (MSPE) be small.
The MSPE for the predictor we consider is given by

E(Xn+h − PnXn+h)2 = E

[
Xn+h −

(
a0 +

n∑
i=1

aiXn+1−i

)]2

.

We wish to find the values a0, a1, . . . , an which minimize the above expression.

Let X = (X1, . . . , Xn)T and a = (a1, . . . , an)T , and let X̃n = (Xn, . . . , X1)T be the vector Xn with the
entries in reverse order. In addition, let µ and γ(h) be the mean and autocovariance function of {Xt, t ∈ Z},
respectively, and define

Γn = (γ(i− j))1≤i,j≤n and γn(h) = (γ(h), γ(h+ 1), . . . , γ(n+ h− 1))T .

Then any values of a0 and a which minimize the MSPE

E(Xn+h − PnXn+h)2 = E
[
Xn+h −

(
a0 + aT X̃n

)]2
must satisfy

a0 = µ(1− aT1n)
Γna = γn(h).

Moreover, under values of a0 and a which satisfy the above equations, the MSPE is given by

E(Xn+h − PnXn+h)2 = γ(0)− aTγn(h).

Derivation of the above equations

To derive the above equations, we consider predicting the value of any random variable V using the
values of some other random variables U1, . . . , Un with a predictor of the form a0 +

∑n
i=1 aiUi. Letting

U = (U1, . . . , Un)T and a = (a1, . . . , an)T , we consider minimizing the MSPE

E[V − (a0 + aTU)]2.

1

We find that the values of a0 and a which minimize the above expression must satisfy the equations

a0 = EV − aTEU
Cov(U)a = Cov(U, V).

We get the above requirements by taking deriatives of the MSPE with respect to a0 and a and setting these
to zero. We have

∂

∂a0
E[V − (a0 + aTU)]2 = −2[EV − a0 − aTEU].

Setting this equal to zero gives
a0 = EV − aTEU.

Plugging this value of a0 into the expression for the MSPE gives

E[V − ((EV − aTEU) + aTU)]2 = E[(V − EV)− aT (U− EU)]2,

and the derivative with respect to a of the above is

∂

∂a = E[(V − EV)− aT (U− EU)]2 = −2E(U− EU)[(V − EV)− aT (U− EU)]

= −2 Cov(U, V) + 2 Cov(U)a.

Setting this equal to zero gives
Cov(U)a = Cov(U, V).

We see that if a0 and a satisfy the above, then

E[V − (a0 + aTU)]2 = E[(V − EV)− aT (U− EU)]2

= E[(V − EV)2 − 2aT (U− EU)(V − EV) + aT (U− EU)(U− EU)Ta]
= VarV − 2aT Cov(U, V) + aT Cov(U)a
= VarV − aT Cov(U, V).

Making forecasts

If the matrix Γn is non-singular, then the values of a0 and a which minimize the MSPE are

a = Γ−1
n γn(h) with a0 = µ(1− 1Tna).

Example:

Consider forecasting the value of Xn+h from the stationary time series defined by

Xt = φXt−1 + Zt, |φ| < 1,

where {Zt, t ∈ Z} is a white noise sequence with mean zero and variance σ2. Then the autocovariance function
(see Lec 03) is given by

γ(h) = φ|h|

1− φ2σ
2.

2

Therefore we have

Γn =



1 φ φ2 . . . φn−2 φn−1

φ 1 φ . . . φn−3 φn−2

φ2 φ 1 . . . φn−4 φn−3

...
...

...
. . .

...
...

φn−2 φn−3 φn−4 . . . 1 φ
φn−1 φn−2 φn−3 . . . φ 1


σ2

1− φ2

and
γn(h) =

(
φh, φh+1, . . . , φh+n−1) σ2

1− φ2 ,

so that a = (φh, 0, . . . , 0)T is the solution to Γna = γn(h). The mean of the time series is equal to zero,
so a0 = 0. The following R code demonstrates forecasting in the AR(1) model: Note that if we assume a
mean-zero model for our time series, we should center the data by subtracting the mean.
phi <- .9
n <- 30
B <- 1000 # length of burn-in period
X0 <- numeric(B+n)
X0[1] <- 0

for(i in 2:(B + n))
{

X0[i] <- phi * X0[i-1] + rnorm(1)
}

X <- X0[-c(1:B)] # remove burn-in obs from beginning
h <- 10 # forecast h steps ahead

compute prediction based on centered data, then add the mean back
Xpred <- (X[n]-mean(X)) * phi^c(1:h) + mean(X)

plot(X,xlim=c(1,n+h),xlab="Time",type="l")
points(Xpred~c((n+1):(n+h)))
abline(h=0,lty=3)

3

0 10 20 30 40

−
2

−
1

0
1

2

Time

X

Fast one-step-ahead forecasting with the Durbin-Levinson algorithm

Consider a stationary time series {Xt, t ∈ Z} and assume that it has mean µ = 0 and autocovariance function
γ(·); for the purposes of forecasting, we do not lose any generality by assuming that µ = 0, since we can
always work with a centered time series. We now just focus on forecasting the value of Xn+1 based on the
values X1, . . . , Xn; that is, we consider the case of one-step-ahead forecasting. For each n = 1, 2, . . ., our
linear forecaster has the form

PnXn+1 =
n∑
i=1

an,iXn+1−i = aTn X̃n,

where an = (a1,1, . . . , an,n)T . The choice of an which minimizes the MSPE must satisfy the equation

Γnan = γn, where γn := γn(n) = (γ(1), . . . , γ(n))T .

If the matrix Γn is non-singular, then the solution is unique and is given by

an = Γ−1
n γn.

If n is very large, then computing the inverse of the n×n matrix Γn could be very computationally expensive.
In the following we derive the Durbin-Levinson algorithm, which is an algorithm to recursively compute
one-step-ahead forecasts PnXn+1 for each n ≥ 1 without having to invert the matrices Γ1,Γ2, . . .

For each k ≥ 1, define ak = (ak,1, . . . , ak,k)T by

ak = Γ−1
k γk,

where γk = (γ(1), . . . , γ(k))T . In addition define ãk = (ak,k, . . . , ak,1)T and γ̃k = (γ(k), . . . , γ(1))T , which
are the vectors ak and γk with the entries in reverse order. We wish to find an expression for the vector ak+1
in terms of ak which does not require an inversion of the matrix Γk+1. We begin by writing

4

 ak+1,1
...

ak+1,k+1

 = Γk+1γk+1

=
[

Γk γ̃k
γ̃Tk γ(0)

]−1
 γk

...
γ(k + 1)


=
[

Γ−1
k + Γ−1

k γ̃k(γ(0)− γ̃TkΓ−1
k γ̃k)−1γ̃TkΓ−1

k −Γ−1
k γ̃k(γ(0)− γ̃TkΓ−1

k γ̃k)−1

−γ̃TkΓ−1
k (γ(0)− γ̃TkΓ−1

k γ̃k)−1 (γ(0)− γ̃TkΓ−1
k γ̃k)−1

] γk
...

γ(k + 1)


=
[

Γ−1
k γk + Γ−1

k γ̃k(γ(0)− γ̃TkΓ−1
k γ̃k)−1γ̃TkΓ−1

k γk − Γ−1
k γ̃k(γ(0)− γ̃TkΓ−1

k γ̃k)−1γ(k + 1)
−γ̃TkΓ−1

k (γ(0)− γ̃TkΓ−1
k γ̃k)−1γk + (γ(0)− γ̃TkΓ−1

k γ̃k)−1γ(k + 1)

]

Replacing Γ−1
k γk with ak and Γ−1

k γ̃k with ãk, we have

 ak+1,1
...

ak+1,k+1

 =

 ak −
γ(k + 1)− γ̃Tk ak
γ(0)− γ̃Tk ãk

ãk
γ(k + 1)− γ̃Tk ak
γ(0)− γ̃Tk ãk

 .

From this we see that we can write

ak+1,k+1 = γ(k + 1)− γ̃Tk ak
γ(0)− γTk ak

(ak+1,1, . . . , ak+1,k)T = ak − ak+1,k+1ãk,

noting that γ̃Tk ãk = γTk ak. With this recursive algorithm we can find ak+1 from ak without having to invert
the matrix Γk+1. We can make one further tweak so that computation is even faster: Set vk = γ(0)− γTk ak
for k ≥ 1 and v0 = γ(0). Then we have

vk = γ(0)− γTk ak
= γ(0)− γ(k)ak,k − γTk−1(ak,1, . . . , ak,k−1)T

= γ(0)− γ(k)ak,k − γTk−1(ak−1 − ak,kãk−1)
= vk−1 − ak,k(γ(k)− γTk−1ãk−1)

= vk−1 − ak,k
(γ(k)− γTk−1ãk−1)
γ(0)− γTk−1ak−1

(γ(0)− γTk−1ak−1)

= vk−1 − a2
k,kvk−1

= vk−1(1− a2
k,k).

This allows us to define the algorithm as described in the following section.

5

Recursive computation of coefficients with the Durbin-Levinson algorithm:

Set
v0 = γ(0) and a1,1 = γ(1)/γ(0),

and then for k = 1, . . . , n perform the recursions

vk = vk−1(1− a2
k,k)

ak+1,k+1 = (γ(k + 1)− γ̃Tk ak)/vk
(ak+1,1, . . . , ak+1,k)T = ak − ak+1,k+1ãk.

The one-step-ahead predictions are then computed as

PkXk+1 =
{

0 if k = 0
aTk X̃k if k = 1, . . . , n,

where X̃k = (Xk, . . . , X1)T for k = 1, . . . , n.

Note: We obtain v0 = γ(0) by considering the case k = 1. Also, the values v0, v1, . . . , vn are the MSPEs for
the predictions.

The following R code defines a function for running the Durbin-Levinson algorithm and applies it to a
simulated data set from an MA(q) model:
DL.1step <- function(X,gamma.0,gamma.n){

n <- length(X)
X.pred <- numeric(n+1)
X.pred[1] <- 0
alpha <- numeric(n)
v <- numeric(n+1)
v[1] <- gamma.0
a.k <- gamma.n[1] / gamma.0
alpha[1] <- a.k

for(k in 1:(n-1))
{

X.pred[k+1] <- sum(a.k * X[k:1])

v[k+1] <- v[k]*(1 - a.k[k]^2)
a.kplus1 <- numeric(k+1)

a.kplus1[k+1] <- (gamma.n[k+1] - sum(gamma.n[k:1] * a.k)) / v[k+1]
a.kplus1[1:k] <- a.k - a.kplus1[k+1] * a.k[k:1]

a.k <- a.kplus1

alpha[k+1] <- a.kplus1[k+1]

}

X.pred[n+1] <- sum(a.k * X[n:1])

6

output <- list(X.pred = X.pred,
alpha = alpha,
v = v)

return(output)

}

generate some data from an MA(q) model
n <- 100
theta <- c(1,.8,.6,.5,.25,.1,.1,.95)
q <- length(theta) - 1
Z <- rnorm(n+q,0,1)
X <- numeric(n)

for(t in 1:n)
{

ind <- q + t:(t-q)
X[t] <- sum(theta * Z[ind])

}

construct vector of autocovariances to use in the DL algorithm
gamma.0 <- 1 * sum(theta^2)
gamma.n <- numeric(n)
for(h in 1:q)
{

gamma.n[h] <- sum(theta[1:(q - h + 1)]*theta[(1 + h) : (q + 1)])
}

run the Durbin-Levinson algorithm in centered data, then add center back
X.pred <- DL.1step(X-mean(X),gamma.0,gamma.n)$X.pred + mean(X)

plot original series as well as one-step-ahead predictions
plot(X,xlim=c(1,n+1),xlab="Time",type="l",ylim=range(X,X.pred))
points(X.pred)
abline(h=0,lty=3)

7

0 20 40 60 80 100

−
3

−
2

−
1

0
1

2
3

4

Time

X

Fast one-step- and h-step-ahead forecasting with the innovations algorithm

Another algorithm with which we can compute one-step-ahead forecasts without inverting large matrices
is the so-called innovations algorithm. This algorithm does not require stationarity, though it assumes a
constant mean. In this section we consider a time series {Xt, t ∈ Z} such that EXt = 0 for all t ∈ Z, we and
define κ(i, j) = EXiXj for i, j ∈ Z.

For k = 1, 2, . . . define the matrices Kk = (κ(i− j))1≤i,j≤k, and assume that these are nonsingular matrices.
Then define the one-step-ahead predictions X̂1, . . . , X̂n of X1, . . . , Xn as

X̂k+1 =


0 if k = 0
k∑
j=1

ak,jXk+1−j if k = 1, . . . , n− 1,

where ak = (ak,1, . . . , ak,k)T is given by

ak = argmin
a∈Rk

E(Xk+1 − aT X̃k)2 = K−1
n (κ(k, k + 1), . . . , κ(1, k + 1))T

for k = 1, . . . , n− 1. Define the vector X̂n = (X̂1, . . . , X̂n)T and let Un = X̂n −Xn, so that U contains the
one-step-ahead prediction errors. We can call these the “innovations”. Define the matrix

An =



0 0 0 . . . 0 0
a1,1 0 0 . . . 0 0
a2,2 a2,1 0 . . . 0 0
a3,3 a3,2 a3,1 . . . 0 0
...

...
...

. . . 0 0
an−1,n−1 an−1,n−2 an−1,n−3 . . . an−1,1 0


,

so that X̂n = AnXn. Then we see that we may write

Un = (I−An)Xn.

8

Moreover, since (I−An) is non-singular, we may write

(I−An)−1Un = Xn,

where (I−An)−1 = (I + Θn), where the matrix Θn has the form

Θn =



0 0 0 . . . 0 0
θ1,1 0 0 . . . 0 0
θ2,2 θ2,1 0 . . . 0 0
θ3,3 θ3,2 θ3,1 . . . 0 0
...

...
...

. . . 0 0
θn−1,n−1 θn−1,n−2 θn−1,n−3 . . . θn−1,1 0


.

Then we may write

X̂n = Xn − (I−An)Xn

= (I−An)−1Un −Un

= (I + Θn)Un −Un

= ΘnUn.

This gives

X̂k+1 =


0 if k = 0
k∑
j=1

θk,j(Xk+1−j − X̂k+1−j) if k = 1, . . . , n− 1.

We find that we can compute the values θn,j , j = 1, . . . , n, n = 1, 2, . . . recursively, allowing fast computation
of the one-step-ahead predictions. This is described in the following section.

Recursive computation of coefficients with the innovations algorithm:

Set v0 = κ(1, 1). Then for k = 1, . . . , n− 1, set

θk,k = v−1
0 κ(k + 1, 1)

and then

θk,k−j = vj

[
κ(k + 1, j + 1)−

j−1∑
l=0

θj,j−lθk,k−lvl

]
, for j = 1, . . . , k − 1

and

vk = κ(k + 1, k + 1)−
k−1∑
l=0

θ2
k,k−lvl.

Moreover, we find that we can get the h-step-ahead predictions X̂n+h, h = 1, 2, . . . according to

X̂n+h =
n+h−1∑
j=h

θn+h−1,j(Xn+h−j − X̂n+h−j),

9

where the values of θn+h−1,j , j = h, . . . , n+ h− 1, h = 1, 2, . . . can be found by continuing the recursions,
but with

vn+h = κ(n+ h, n+ h)−
n+h−1∑
j=h

θ2
n+h−1,jvn+h−j

(see pg. 167 of B&D Theory). As with the Durbin-Levinson algorithm, the values v0, . . . , vn, vn+1, . . . , vn+h
are the MSPEs for the predictions.

The following R code implements h-step ahead forecasting with the innovations algorithm:
build a function to perform the innovations algorithm
innov.hstep<- function(X,h,K){
#
X = vector of data values
h = number of step ahead for which to predict
K = covariance matrix of X_1,dots,X_{n+h}
#

n <- length(X)
v <- numeric(n+h)
X.pred <- numeric(n+h)
Theta <- matrix(NA,n+h,n+h)

v[1] <- K[1,1]
X.pred[1] <- 0

Theta[1,1] <- K[2,1] / v[1]
v[2] <- K[2,2] - Theta[1,1]^2*v[1]
X.pred[2] <- Theta[1,1]*X[1]

for(k in 2:n)
{

Theta[k,k] <- K[k+1,1] / v[1]

for(j in 1:(k-1))
{

Theta[k,k-j] <- (K[k+1,j+1]-sum(Theta[j,j:1]*Theta[k,k:(k-j+1)]*v[1:j]))/v[j+1]

}

v[k+1] <- K[k+1,k+1] - sum(Theta[k,k:1]^2 * v[1:k])
X.pred[k+1] <- sum(Theta[k,1:k] *(X[k:1] - X.pred[k:1]))

}

for(k in (n+1):(n+h-1))
{

Theta[k,k] <- K[k+1,1] / v[1]

for(j in 1:(k-1))
{

10

Theta[k,k-j]<-(K[k+1,j+1]-sum(Theta[j,j:1]*Theta[k,k:(k-j+1)]*v[1:j]))/v[j+1]

}

v[k+1] <- K[k+1,k+1] - sum(Theta[k,(k-n+1):k]^2 * v[n:1])
X.pred[k+1] <- sum(Theta[k,(k-n+1):k] *(X[n:1] - X.pred[n:1]))

}

output <- list(X.pred = X.pred,
v = v)

return(output)

}

generate some data from an MA(q) model
n <- 100
theta <- c(1,.8,.6,.5,.25,.1,.1,.95)
q <- length(theta) - 1
Z <- rnorm(n+q,0,1)
X <- numeric(n)

for(t in 1:n)
{

ind <- q + t:(t-q)
X[t] <- sum(theta * Z[ind])

}

construct covariance matrix K
h <- 10
gamma.0 <- 1 * sum(theta^2)
gamma.nplush <- numeric(n+h)
for(l in 1:q)
{

gamma.nplush[l] <- sum(theta[1:(q - l + 1)]*theta[(1 + l) : (q + 1)])
}

K <- matrix(NA,n+h,n+h)
for(j in 1:(n+h))

for(i in 1:(n+h))
{

K[i,j] <- c(gamma.0,gamma.nplush)[1+abs(i-j)]

}

run the innovations algorithm in centered data, then add mean back
X.pred <- innov.hstep(X-mean(X),h,K)$X.pred + mean(X)

plot original series as well as predictions
plot(X,xlim=c(1,n+h),xlab="Time",ylim=range(X,X.pred),type="l")
points(X.pred)

11

abline(h=0,lty=3)

0 20 40 60 80 100

−
4

−
2

0
2

4

Time

X

The partial autocorrelation function

In addition to the autocorrelation function, another function, called the partial autocorrelation function
(pacf), carries information about the dependence structure of a stationary time series. For a stationary time
series {Xt, t ∈ Z} with mean 0 and any random variable Y , define

Psp{X2,...,Xk}Y =
k∑
j=2

ajXj ,

where a2, . . . , ak are the values which minimize the expression

E

Y − k∑
j=2

ajXj

2

.

So Psp{X2,...,Xk}Y is the projection of Y onto the space spanned by X2, . . . , Xk. The partial autocorrelation
function α(·) is given by

α(k) = Corr(Xk+1 − Psp{X2,...,Xk}Xk+1, X1 − Psp{X2,...,Xk}X1)

for k = 1, 2, . . . We can interpret α(k) as the correlation between Xk+1 and X1 after accounting for the effects
of the intermediate random variables X2, . . . , Xk. That is, if we were to regress both Xk+1 and X1 onto
X2, . . . , Xk and get the residuals, the correlation between these residuals would be equal to α(k).

Interestingly, it turns out that the Durbin-Levinson algorithm computes the partial autocorrelations
α(1), . . . , α(n) as it goes through its recursions. In fact, the partial autocorrelations are equal to

α(k) = ak,k, for k = 1, . . . , n.

We will discuss the pacf more later on.

12

Building prediction intervals for Gaussian processes

For a stationary time series {Xt, t ∈ Z} in which each Xt has a Normal distribution, prediction intervals can
be constructed using quantiles from the Normal distribution according to

X̂k+1 ± zα
√
vk, k = 1, . . . , n+ h− 1,

where zα is the upper α quantile of the standard Normal distribution and where the MSPEs v1, . . . , vn+h−1
can be obtained from the innovations algorithm. The R code below implements this on the data set from in
the previous chunk of R code.
innov.hstep.out <- innov.hstep(X-mean(X),h,K)
X.pred <- innov.hstep.out$X.pred + mean(X)
v <- innov.hstep.out$v

lo.pred <- X.pred - 1.96 * sqrt(v)
up.pred <- X.pred + 1.96 * sqrt(v)

plot original series as well as predictions with prediction limits
plot(X,xlim=c(n-10,n+h),xlab="Time",type="l",ylim=range(X,lo.pred,up.pred))
points(X.pred)
lines(lo.pred,lty=3)
lines(up.pred,lty=3)
abline(h=0,lty=3)

90 95 100 105 110

−
6

−
4

−
2

0
2

4
6

Time

X

13

	Forecasting for time series
	Minimizing the expected squared prediction error
	Derivation of the above equations

	Making forecasts
	Example:

	Fast one-step-ahead forecasting with the Durbin-Levinson algorithm
	Recursive computation of coefficients with the Durbin-Levinson algorithm:

	Fast one-step- and h-step-ahead forecasting with the innovations algorithm
	Recursive computation of coefficients with the innovations algorithm:

	The partial autocorrelation function
	Building prediction intervals for Gaussian processes

