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Forecasting for time series

Given a length-n realization X1,...,X,, of a stationary time series {X;,t € Z}, we consider predicting the
value of X,,1p, for h > 1, based on the values X3, ..., X,,. Specifically, we will consider a predictor P, X, 1
of X,,+p which is linear in the values X, ..., X, taking the form

n
Py Xnyn =ag+ Zaan+1—1i~
i1

Minimizing the expected squared prediction error

A desirable property of a predictor is that the expected or mean squared prediction error (MSPE) be small.
The MSPE for the predictor we consider is given by

n 2
E(XnJrh - Pan+h)2 =E [Xn+h - (aO + Z aan+1i>] .
i=1

We wish to find the values ag, a1, ..., a, which minimize the above expression.

Let X = (X1,...,X,)" and a = (ay,...,a,)7, and let X,, = (X,,,...,X1)T be the vector X,, with the
entries in reverse order. In addition, let p and (k) be the mean and autocovariance function of {Xy,t € Z},
respectively, and define

T,= (G- j))1§i,j§n and v, (h) = (y(h),y(h+1),...,v(n+h—1))T.
Then any values of ag and a which minimize the MSPE
o \12
E(Xnih — PuXnsn)? =E [Xpin — (a0 +a"X,,)]

must satisfy

ag = p(l— aTln)
T,a=+,(h).

Moreover, under values of ag and a which satisfy the above equations, the MSPE is given by

E(XnJrh - Pan+h)2 = 7(0) - aT’Yn(h)

Derivation of the above equations

To derive the above equations, we consider predicting the value of any random variable V' using the
values of some other random variables Uy, ...,U, with a predictor of the form ag + 2?21 a;U;. Letting
U= (Uy,...,U,)" and a = (ay,...,a,)T, we consider minimizing the MSPE

E[V - (a0 +aTU)J2,



We find that the values of ag and a which minimize the above expression must satisfy the equations

ag =EV —aTEU
Cov(U)a = Cov(U, V).

We get the above requirements by taking deriatives of the MSPE with respect to ap and a and setting these
to zero. We have 9

a—]E[V — (ap +aTU)? = —2[EV — qp — aTEU].
ao

Setting this equal to zero gives
ap=EV —a’EU.

Plugging this value of a( into the expression for the MSPE gives
E[V — ((EV —a’EU) +a’U))> = E[(V - EV) — a” (U - EU))?,

and the derivative with respect to a of the above is

0

e = E[(V —EV) —a® (U - EU)]? = —2E(U — EU)[(V — EV) — a’ (U — EU)]

= —2Cov(U, V) +2Cov(U)a.

Setting this equal to zero gives
Cov(U)a = Cov(U, V).

We see that if ag and a satisfy the above, then

E[V — (ag +a’U)]? = E[(V —EV) —a’ (U - EU)J?
=E[(V —EV)? —2a” (U - EU)(V —EV) +a” (U - EU)(U — EU)"a]
= VarV — 2a’ Cov(U, V) +a’ Cov(U)a
= VarV —a® Cov(U, V).

Making forecasts

If the matrix I';, is non-singular, then the values of ap and a which minimize the MSPE are

a=T,'5,(h) with ag=pu(l—1%a).

Example:
Consider forecasting the value of X, from the stationary time series defined by
Xe=0Xe 1+ 27, |9 <1,

where {Z,,t € Z} is a white noise sequence with mean zero and variance o2. Then the autocovariance function
(see Lec 03) is given by

[h]
1) = 10



Therefore we have
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so that a = (¢",0,...,0)7 is the solution to T'ya = ~,,(h). The mean of the time series is equal to zero,

so ag = 0. The following R code demonstrates forecasting in the AR(1) model: Note that if we assume a
mean-zero model for our time series, we should center the data by subtracting the mean.

phi <- .9

n <- 30

B <- 1000 # length of burn-in period

X0 <- numeric(B+n)

X0[1] <- 0

for( i in 2:(B + n))
{

X0[i] <- phi * XO0[i-1] + rnorm(1)
}

X <= X0[-c(1:B)] # remove burn-in obs from beginning
h <- 10 # forecast h steps ahead

# compute prediction based on centered data, then add the mean back
Xpred <- (X[n]-mean(X)) * phi~c(1:h) + mean(X)

plot(X,xlim=c(1l,n+h) ,xlab="Time",type="1")
points (Xpred~c((n+1): (n+h)))
abline (h=0,1ty=3)
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Fast one-step-ahead forecasting with the Durbin-Levinson algorithm

Consider a stationary time series {X¢,t € Z} and assume that it has mean p = 0 and autocovariance function
~(+); for the purposes of forecasting, we do not lose any generality by assuming that p = 0, since we can
always work with a centered time series. We now just focus on forecasting the value of X, 11 based on the
values X1,...,X,; that is, we consider the case of one-step-ahead forecasting. For each n = 1,2,..., our
linear forecaster has the form

n
TG
Pan+1 = § an,an+1—i =a, Xn;
=1

where a,, = (a1,1,...,an,)T. The choice of a,, which minimizes the MSPE must satisfy the equation
T,a, =7,, where =~,:=7,(n)="1),...,7(n)".
If the matrix I',, is non-singular, then the solution is unique and is given by
a, =T, 17n.

If n is very large, then computing the inverse of the n x n matrix I';, could be very computationally expensive.
In the following we derive the Durbin-Levinson algorithm, which is an algorithm to recursively compute
one-step-ahead forecasts P, X, 11 for each n > 1 without having to invert the matrices I';, I, ...

For each k > 1, define a; = (ak1,...,arx)’ by
_ -1
ar = Fk Yk>

where v, = (v(1),...,7v(k))T. In addition define a = (ak.k,...,ar1)? and 7, = (y(k),...,y(1))T, which
are the vectors a; and ~y, with the entries in reverse order. We wish to find an expression for the vector a1
in terms of a; which does not require an inversion of the matrix I', 1. We begin by writing



Q41,1

=Tet1Vp
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Replacing I‘,;lfyk with a; and F,;lﬁlk with aj, we have

y(k+1) - :Y;Epaké

k41,1 ay — —

. _ ~(0) — '{Tak

: y(k+1) — v ak
Fht1k+1 Y(0) — 7% &

From this we see that we can write

v(k+1) — ¥ ag
7(0) — ~v{a

T ~
(Qk1,15 - Qk1,k) = Ak — Qhog 1 k18,

Ak4+1,k+1 =

noting that 47 a, = v} aj. With this recursive algorithm we can find a;; from a;, without having to invert
the matrix T'y 1. We can make one further tweak so that computation is even faster: Set vy = v(0) — v ay
for k > 1 and vy = v(0). Then we have

v, =7(0) — ’Y{ak
=7(0) — y(k)ar, —Vi_1(ak1, - agp—1)"
=7(0) = v(k)akr — ¥i_1(ar—1 — arrax_1)

=vp_1 — apr(y(k) —vi_185_1)
(7(/’@) — Vi 18k-1)
’Y(O) - ’Ygflak—l

= V-1 — ak’kkal

= Vg—1 —

=vp_1(1— a%k).

This allows us to define the algorithm as described in the following section.



Recursive computation of coefficients with the Durbin-Levinson algorithm:

Set
vo=7(0) and a1 =~(1)/7(0),

and then for k = 1,...,n perform the recursions

v = vp—1(1 — a%,k)
apy1k41 = (Y(k+1) — AEag) vk

T ~
(ak+1,17 ce ,ak+1,k) = ag — Ak+41,k+1Ak-

The one-step-ahead predictions are then computed as

0 iftk=0

Pka+1_{ ang ifk=1,...,n,

where X, = (Xg,..., X))  fork=1,...,n.

Note: We obtain vy = 7(0) by considering the case k = 1. Also, the values vg, vy, ..., v, are the MSPEs for
the predictions.

The following R code defines a function for running the Durbin-Levinson algorithm and applies it to a
simulated data set from an MA(q) model:

DL.1step <- function(X,gamma.0,gamma.n){

n <- length(X)

X.pred <- numeric(n+1)
X.pred[1] <- 0

alpha <- numeric(n)

v <- numeric(n+1)

v[1] <- gamma.O

a.k <- gamma.n[1] / gamma.O
alpha[1] <- a.k

for(k in 1:(n-1))
{

X.pred[k+1] <- sum( a.k * X[k:1] )

vIik+1] <- v[k]*(1 - a.k[k]"2)
a.kplusl <- numeric(k+1)

a.kplusl[k+1] <- ( gamma.n[k+1] - sum( gamma.n[k:1] * a.k ) ) / v[k+1]
a.kplusi[1:k] <- a.k - a.kplusl[k+1] * a.k[k:1]

a.k <- a.kplusl
alpha[k+1] <- a.kplusl[k+1]
}

X.pred[n+1] <- sum( a.k * X[n:1] )



output <- list( X.pred = X.pred,
alpha = alpha,
v =)

return(output)

}

# generate some data from an MA(q) model
n <- 100

theta <- ¢(1,.8,.6,.5,.25,.1,.1,.95)

q <- length(theta) - 1

Z <- rnorm(n+q,0,1)

X <- numeric(n)

for( t in 1:n)
{
ind <- q + t:(t-q)
X[t] <- sum( theta * Z[ind] )

# construct vector of autocovariances to use in the DL algorithm
gamma.0 <- 1 * sum(theta”2)
gamma.n <- numeric(n)
for( h in 1:q )
{
gamma.n[h] <- sum(thetal[l:(q - h + 1 )I*thetal (1 +h ) : ( g+ 1) 1)
}

# run the Durbin-Levinson algorithm in centered data, then add center back
X.pred <- DL.1step(X-mean(X),gamma.0,gamma.n)$X.pred + mean(X)

# plot original series as well as one-step-ahead predictions
plot(X,xlim=c(l,n+1) ,xlab="Time",type="1",ylim=range(X,X.pred))
points(X.pred)

abline (h=0,1ty=3)
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Fast one-step- and h-step-ahead forecasting with the innovations algorithm

Another algorithm with which we can compute one-step-ahead forecasts without inverting large matrices
is the so-called innovations algorithm. This algorithm does not require stationarity, though it assumes a
constant mean. In this section we consider a time series {X;,t € Z} such that EX, = 0 for all ¢t € Z, we and
define k(i, j) = EX; X for i,j € Z.

For k =1,2,... define the matrices Ky = (k(i — j))1<i,j<k, and assume that these are nonsingular matrices.
Then define the one-step-ahead predictions Xl, e ,Xn of X1,...,X, as

0 iftk=0

. k
X1 = Zak,ijH—j ifk=1,...,n—1,
7j=1

where ay, = (ag1,...,arx)? is given by

ap = argmin  E(Xp —aTXp)? = K, (s(k, k+1),...,6(1,k+1)T
acRk

for k=1,...,n — 1. Define the vector X, = (Xl, . ,X7L)T and let U, = X,, — X, so that U contains the
one-step-ahead prediction errors. We can call these the “innovations”. Define the matrix

0 0 0 0 0
a1 0 0 0 0
a2 2 a1 0 0 0
An = as3 as2 as,1 0 0>
: : 0 0
Ll On—1,n—1 Qn—-1n-2 GOGn—-1n-3 --- Ap—1,1 0 |

so that Xn = A, X,,. Then we see that we may write

U, = (I-A,)X,.



Moreover, since (I — A,,) is non-singular, we may write
(I - An)ilUn == Xn,

where (I — A,)"! = (I+®,,), where the matrix ®,, has the form

0 0 0 0 0
01,1 0 0 0 0
02’2 02’1 0 0 0
0, = 033 032 031 0 0
. . . 0 0
| Onin—1 On—in—2 Op_1n—3 ... Op_11 0O |
Then we may write
X,=X,—-I-A,X,
=1-4A,'U,-1U,
=(1I+6,uU,-1U,
=0,U,.
This gives
0 ifk=0
X_ . k
k1 = Zﬁk,j(XkH_j—XkH_j) if k= 1,...,n—1.
j=1
We find that we can compute the values 0, ;, 7 =1,...,n, n = 1,2,... recursively, allowing fast computation

of the one-step-ahead predictions. This is described in the following section.

Recursive computation of coefficients with the innovations algorithm:
Set vg = k(1,1). Then for k=1,...,n—1, set

Ok = vg 'r(k +1,1)
and then

J—1
gk,kfj = vy Iﬁl(k-l—l,j-i—].) —Zﬁj,j,lﬂk,k,lvl , for j=1...,k—1
=0

and

k-1
v =k(k+1,k+1)— Z ez,k—z”b
1=0

Moreover, we find that we can get the h-step-ahead predictions Xn+h, h=1,2,... according to

n+h—1

Xntn = Z Ontn—1,;(Xnsh—j — Xnth—j),
J=h



where the values of 0,141, j=h,...,n+h -1, h=1,2,... can be found by continuing the recursions,

but with
n+h—1

Ungn = K(n+h,n+h)— Z O i hi1,jUnthej
j=h
(see pg. 167 of B&D Theory). As with the Durbin-Levinson algorithm, the values v, ..., Upn, Unt1, - .-, Unth
are the MSPEs for the predictions.

The following R code implements h-step ahead forecasting with the innovations algorithm:

# build a function to perform the innovations algorithm
innov.hstep<- function(X,h,K){

#

# X = vector of data values

# h = number of step ahead for which to predict

# K = covariance matriz of X_1,dots,X_{n+h}

#

n <- length(X)

v <- numeric(n+h)

X.pred <- numeric(n+h)
Theta <- matrix(NA,n+h,n+h)

v[1] <- K[1,1]
X.pred[1] <- 0

Theta[1,1] <- KI[2,1] / vI[1]
v[2] <- K[2,2] - Thetal1,1]"2*v[1]
X.pred[2] <- Thetal1,1]1*X[1]

for(k in 2:n)

{
Thetal[k,k] <- K[k+1,1] / v[1]
for(j in 1:(k-1))
{
Thetal[k,k-j] <- (K[k+1,j+1]-sum(Thetalj,j:1]*Thetalk,k: (k-j+1)I1*v[1:31))/v[j+1]
}
v[k+1] <- K[k+1,k+1] - sum( Thetalk,k:1]172 * v[1:k] )
X.pred[k+1] <- sum( Theta[k,1:k] *(X[k:1] - X.pred[k:1]) )
¥

for(k in (n+1):(n+h-1))
{

Thetalk,k] <- K[k+1,1] / v[1]

for(j in 1:(k-1))
{

10



Theta[k,k-jl<-(K[k+1,j+1]-sum(Thetalj, j:1]*Thetalk,k: (k-j+1)]1*v[1:5]1))/v[j+1]
}

v[k+1] <- K[k+1,k+1] - sum( Thetalk, (k-n+1):k]"2 * v[n:1] )
X.pred[k+1] <- sum( Thetalk, (k-n+1):k] *(X[n:1] - X.pred[n:1]) )

}

output <- list( X.pred = X.pred,
v =v)

return(output)

}

# generate some data from an MA(q) model
n <- 100

theta <- c¢(1,.8,.6,.5,.25,.1,.1,.95)

q <- length(theta) - 1

Z <- rnorm(n+q,0,1)

X <- numeric(n)

for( t in 1:n)
{
ind <- q + t:(t-q)
X[t] <- sum( theta * Z[ind] )

# construct covariance matriz K
h <- 10
gamma.0 <- 1 * sum(theta”2)
gamma.nplush <- numeric(n+h)
for( 1 in 1:q )
{
gamma.nplush[1] <- sum(thetall:(q - 1 + 1 )J*thetal (1 +1) : (g+ 1) 1)
}

K <- matrix(NA,n+h,n+h)
for(j in 1:(n+h))

for(i in 1:(n+h))
{

K[i,j] <~ c(gamna.0,gamma.nplush) [1+abs (i-3)]
}

# run the innovations algorithm in centered data, then add mean back
X.pred <- innov.hstep(X-mean(X),h,K)$X.pred + mean(X)

# plot original series as well as predictions

plot(X,xlim=c(1,n+h) ,xlab="Time",ylim=range (X,X.pred) ,type="1")
points(X.pred)

11



abline(h=0,1ty=3)
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The partial autocorrelation function

In addition to the autocorrelation function, another function, called the partial autocorrelation function
(pact), carries information about the dependence structure of a stationary time series. For a stationary time
series {Xy,t € Z} with mean 0 and any random variable Y, define

k
P xooxyY = Y a; X5,
j=2

where ao, ..., ar are the values which minimize the expression

2

k
EfY - Z(Iij
j=2

So Pssix,,...,x,,1 Y is the projection of Y onto the space spanned by X5, ..., X;. The partial autocorrelation
function af(-) is given by

a(k) = Corr(Xiy1 — Pspixs,....x0} Xkt 1, X1 — Pop(xa,..., x,3X1)

for k =1,2,... We can interpret a(k) as the correlation between X1 and X; after accounting for the effects
of the intermediate random variables X, ..., X}. That is, if we were to regress both X1 and X; onto
Xa,..., X\ and get the residuals, the correlation between these residuals would be equal to a(k).

Interestingly, it turns out that the Durbin-Levinson algorithm computes the partial autocorrelations
a(l),...,a(n) as it goes through its recursions. In fact, the partial autocorrelations are equal to

alk)=akk, fork=1,...,n

We will discuss the pacf more later on.

12



Building prediction intervals for Gaussian processes

For a stationary time series {X;,¢ € Z} in which each X; has a Normal distribution, prediction intervals can
be constructed using quantiles from the Normal distribution according to

XkJrl:tZoM/Uk, k=1,...,.n+h—1,

where z,, is the upper a quantile of the standard Normal distribution and where the MSPEs vy, ..., vp4p-1
can be obtained from the innovations algorithm. The R code below implements this on the data set from in
the previous chunk of R code.

innov.hstep.out <- innov.hstep(X-mean(X),h,K)
X.pred <- innov.hstep.out$X.pred + mean(X)
v <- innov.hstep.out$v

lo.pred <- X.pred - 1.96 * sqrt(v)
up.pred <- X.pred + 1.96 * sqrt(v)

# plot original series as well as predictions with prediction limits
plot(X,xlim=c(n-10,n+h) ,xlab="Time",type="1",ylim=range(X,lo.pred,up.pred))
points(X.pred)

lines(lo.pred,lty=3 )

lines(up.pred,lty=3)

abline (h=0,1ty=3)
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