STAT 720 sp 2019 Lec 04

Karl Gregory
1/24/2019

Forecasting for time series

Given a length- n realization X_{1}, \ldots, X_{n} of a stationary time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$, we consider predicting the value of X_{n+h}, for $h \geq 1$, based on the values X_{1}, \ldots, X_{n}. Specifically, we will consider a predictor $P_{n} X_{n+h}$ of X_{n+h} which is linear in the values X_{1}, \ldots, X_{n}, taking the form

$$
P_{n} X_{n+h}=a_{0}+\sum_{i=1}^{n} a_{i} X_{n+1-i}
$$

Minimizing the expected squared prediction error

A desirable property of a predictor is that the expected or mean squared prediction error (MSPE) be small. The MSPE for the predictor we consider is given by

$$
\mathbb{E}\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}=\mathbb{E}\left[X_{n+h}-\left(a_{0}+\sum_{i=1}^{n} a_{i} X_{n+1-i}\right)\right]^{2}
$$

We wish to find the values $a_{0}, a_{1}, \ldots, a_{n}$ which minimize the above expression.
Let $\mathbf{X}=\left(X_{1}, \ldots, X_{n}\right)^{T}$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{T}$, and let $\tilde{\mathbf{X}}_{n}=\left(X_{n}, \ldots, X_{1}\right)^{T}$ be the vector \mathbf{X}_{n} with the entries in reverse order. In addition, let μ and $\gamma(h)$ be the mean and autocovariance function of $\left\{X_{t}, t \in \mathbb{Z}\right\}$, respectively, and define

$$
\boldsymbol{\Gamma}_{n}=(\gamma(i-j))_{1 \leq i, j \leq n} \quad \text { and } \quad \gamma_{n}(h)=(\gamma(h), \gamma(h+1), \ldots, \gamma(n+h-1))^{T}
$$

Then any values of a_{0} and a which minimize the MSPE

$$
\mathbb{E}\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}=\mathbb{E}\left[X_{n+h}-\left(a_{0}+\mathbf{a}^{T} \tilde{\mathbf{X}}_{n}\right)\right]^{2}
$$

must satisfy

$$
\begin{aligned}
a_{0} & =\mu\left(1-\mathbf{a}^{T} \mathbf{1}_{n}\right) \\
\boldsymbol{\Gamma}_{n} \mathbf{a} & =\gamma_{n}(h) .
\end{aligned}
$$

Moreover, under values of a_{0} and a which satisfy the above equations, the MSPE is given by

$$
\mathbb{E}\left(X_{n+h}-P_{n} X_{n+h}\right)^{2}=\gamma(0)-\mathbf{a}^{T} \boldsymbol{\gamma}_{n}(h) .
$$

Derivation of the above equations

To derive the above equations, we consider predicting the value of any random variable V using the values of some other random variables U_{1}, \ldots, U_{n} with a predictor of the form $a_{0}+\sum_{i=1}^{n} a_{i} U_{i}$. Letting $\mathbf{U}=\left(U_{1}, \ldots, U_{n}\right)^{T}$ and $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)^{T}$, we consider minimizing the MSPE

$$
\mathbb{E}\left[V-\left(a_{0}+\mathbf{a}^{T} \mathbf{U}\right)\right]^{2}
$$

We find that the values of a_{0} and a which minimize the above expression must satisfy the equations

$$
\begin{aligned}
a_{0} & =\mathbb{E} V-\mathbf{a}^{T} \mathbb{E} \mathbf{U} \\
\operatorname{Cov}(\mathbf{U}) \mathbf{a} & =\operatorname{Cov}(\mathbf{U}, V)
\end{aligned}
$$

We get the above requirements by taking deriatives of the MSPE with respect to a_{0} and a and setting these to zero. We have

$$
\frac{\partial}{\partial a_{0}} \mathbb{E}\left[V-\left(a_{0}+\mathbf{a}^{T} \mathbf{U}\right)\right]^{2}=-2\left[\mathbb{E} V-a_{0}-\mathbf{a}^{T} \mathbb{E} \mathbf{U}\right]
$$

Setting this equal to zero gives

$$
a_{0}=\mathbb{E} V-\mathbf{a}^{T} \mathbb{E} \mathbf{U}
$$

Plugging this value of a_{0} into the expression for the MSPE gives

$$
\mathbb{E}\left[V-\left(\left(\mathbb{E} V-\mathbf{a}^{T} \mathbb{E} \mathbf{U}\right)+\mathbf{a}^{T} \mathbf{U}\right)\right]^{2}=\mathbb{E}\left[(V-\mathbb{E} V)-\mathbf{a}^{T}(\mathbf{U}-\mathbb{E} \mathbf{U})\right]^{2}
$$

and the derivative with respect to \mathbf{a} of the above is

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{a}}=\mathbb{E}\left[(V-\mathbb{E} V)-\mathbf{a}^{T}(\mathbf{U}-\mathbb{E} \mathbf{U})\right]^{2} & =-2 \mathbb{E}(\mathbf{U}-\mathbb{E} \mathbf{U})\left[(V-\mathbb{E} V)-\mathbf{a}^{T}(\mathbf{U}-\mathbb{E} \mathbf{U})\right] \\
& =-2 \operatorname{Cov}(\mathbf{U}, V)+2 \operatorname{Cov}(\mathbf{U}) \mathbf{a}
\end{aligned}
$$

Setting this equal to zero gives

$$
\operatorname{Cov}(\mathbf{U}) \mathbf{a}=\operatorname{Cov}(\mathbf{U}, V)
$$

We see that if a_{0} and a satisfy the above, then

$$
\begin{aligned}
\mathbb{E}\left[V-\left(a_{0}+\mathbf{a}^{T} \mathbf{U}\right)\right]^{2} & =\mathbb{E}\left[(V-\mathbb{E} V)-\mathbf{a}^{T}(\mathbf{U}-\mathbb{E} \mathbf{U})\right]^{2} \\
& =\mathbb{E}\left[(V-\mathbb{E} V)^{2}-2 \mathbf{a}^{T}(\mathbf{U}-\mathbb{E} \mathbf{U})(V-\mathbb{E} V)+\mathbf{a}^{T}(\mathbf{U}-\mathbb{E} \mathbf{U})(\mathbf{U}-\mathbb{E} \mathbf{U})^{T} \mathbf{a}\right] \\
& =\operatorname{Var} V-2 \mathbf{a}^{T} \operatorname{Cov}(\mathbf{U}, V)+\mathbf{a}^{T} \operatorname{Cov}(\mathbf{U}) \mathbf{a} \\
& =\operatorname{Var} V-\mathbf{a}^{T} \operatorname{Cov}(\mathbf{U}, V)
\end{aligned}
$$

Making forecasts

If the matrix $\boldsymbol{\Gamma}_{n}$ is non-singular, then the values of a_{0} and a which minimize the MSPE are

$$
\mathbf{a}=\boldsymbol{\Gamma}_{n}^{-1} \gamma_{n}(h) \quad \text { with } \quad a_{0}=\mu\left(1-\mathbf{1}_{n}^{T} \mathbf{a}\right)
$$

Example:

Consider forecasting the value of X_{n+h} from the stationary time series defined by

$$
X_{t}=\phi X_{t-1}+Z_{t}, \quad|\phi|<1
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ is a white noise sequence with mean zero and variance σ^{2}. Then the autocovariance function (see Lec 03) is given by

$$
\gamma(h)=\frac{\phi^{|h|}}{1-\phi^{2}} \sigma^{2}
$$

Therefore we have

$$
\boldsymbol{\Gamma}_{n}=\left(\begin{array}{cccccc}
1 & \phi & \phi^{2} & \ldots & \phi^{n-2} & \phi^{n-1} \\
\phi & 1 & \phi & \ldots & \phi^{n-3} & \phi^{n-2} \\
\phi^{2} & \phi & 1 & \ldots & \phi^{n-4} & \phi^{n-3} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\phi^{n-2} & \phi^{n-3} & \phi^{n-4} & \ldots & 1 & \phi \\
\phi^{n-1} & \phi^{n-2} & \phi^{n-3} & \ldots & \phi & 1
\end{array}\right) \frac{\sigma^{2}}{1-\phi^{2}}
$$

and

$$
\gamma_{n}(h)=\left(\phi^{h}, \phi^{h+1}, \ldots, \phi^{h+n-1}\right) \frac{\sigma^{2}}{1-\phi^{2}}
$$

so that $\mathbf{a}=\left(\phi^{h}, 0, \ldots, 0\right)^{T}$ is the solution to $\boldsymbol{\Gamma}_{n} \mathbf{a}=\gamma_{n}(h)$. The mean of the time series is equal to zero, so $a_{0}=0$. The following R code demonstrates forecasting in the $\operatorname{AR}(1)$ model: Note that if we assume a mean-zero model for our time series, we should center the data by subtracting the mean.

```
phi <- . }
n <- 30
B <- 1000 # length of burn-in period
X0 <- numeric(B+n)
X0[1] <- 0
for( i in 2:(B + n))
{
        X0[i] <- phi * X0[i-1] + rnorm(1)
}
X <- XO[-c(1:B)] # remove burn-in obs from beginning
h <- 10 # forecast h steps ahead
# compute prediction based on centered data, then add the mean back
Xpred <- (X[n]-mean(X)) * phi^c(1:h) + mean(X)
plot(X,xlim=c(1,n+h),xlab="Time",type="l")
points(Xpred~c((n+1):(n+h)))
abline(h=0,lty=3)
```


Fast one-step-ahead forecasting with the Durbin-Levinson algorithm

Consider a stationary time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ and assume that it has mean $\mu=0$ and autocovariance function $\gamma(\cdot)$; for the purposes of forecasting, we do not lose any generality by assuming that $\mu=0$, since we can always work with a centered time series. We now just focus on forecasting the value of X_{n+1} based on the values X_{1}, \ldots, X_{n}; that is, we consider the case of one-step-ahead forecasting. For each $n=1,2, \ldots$, our linear forecaster has the form

$$
P_{n} X_{n+1}=\sum_{i=1}^{n} a_{n, i} X_{n+1-i}=\mathbf{a}_{n}^{T} \tilde{\mathbf{X}}_{n},
$$

where $\mathbf{a}_{n}=\left(a_{1,1}, \ldots, a_{n, n}\right)^{T}$. The choice of \mathbf{a}_{n} which minimizes the MSPE must satisfy the equation

$$
\boldsymbol{\Gamma}_{n} \mathbf{a}_{n}=\gamma_{n}, \quad \text { where } \quad \gamma_{n}:=\gamma_{n}(n)=(\gamma(1), \ldots, \gamma(n))^{T} .
$$

If the matrix $\boldsymbol{\Gamma}_{n}$ is non-singular, then the solution is unique and is given by

$$
\mathbf{a}_{n}=\boldsymbol{\Gamma}_{n}^{-1} \boldsymbol{\gamma}_{n} .
$$

If n is very large, then computing the inverse of the $n \times n$ matrix $\boldsymbol{\Gamma}_{n}$ could be very computationally expensive. In the following we derive the Durbin-Levinson algorithm, which is an algorithm to recursively compute one-step-ahead forecasts $P_{n} X_{n+1}$ for each $n \geq 1$ without having to invert the matrices $\boldsymbol{\Gamma}_{1}, \boldsymbol{\Gamma}_{2}, \ldots$
For each $k \geq 1$, define $\mathbf{a}_{k}=\left(a_{k, 1}, \ldots, a_{k, k}\right)^{T}$ by

$$
\mathbf{a}_{k}=\boldsymbol{\Gamma}_{k}^{-1} \gamma_{k}
$$

where $\boldsymbol{\gamma}_{k}=(\gamma(1), \ldots, \gamma(k))^{T}$. In addition define $\tilde{\mathbf{a}}_{k}=\left(a_{k, k}, \ldots, a_{k, 1}\right)^{T}$ and $\tilde{\gamma}_{k}=(\gamma(k), \ldots, \gamma(1))^{T}$, which are the vectors \mathbf{a}_{k} and γ_{k} with the entries in reverse order. We wish to find an expression for the vector \mathbf{a}_{k+1} in terms of \mathbf{a}_{k} which does not require an inversion of the matrix $\boldsymbol{\Gamma}_{k+1}$. We begin by writing

$$
\begin{aligned}
& {\left[\begin{array}{c}
a_{k+1,1} \\
\vdots \\
a_{k+1, k+1}
\end{array}\right]=\boldsymbol{\Gamma}_{k+1} \boldsymbol{\gamma}_{k+1}} \\
& =\left[\begin{array}{cc}
\boldsymbol{\Gamma}_{k} & \tilde{\boldsymbol{\gamma}}_{k} \\
\tilde{\boldsymbol{\gamma}}_{k}^{T} & \gamma(0)
\end{array}\right]^{-1}\left[\begin{array}{c}
\boldsymbol{\gamma}_{k} \\
\vdots \\
\gamma(k+1)
\end{array}\right] \\
& =\left[\begin{array}{cc}
\boldsymbol{\Gamma}_{k}^{-1}+\boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\left(\gamma(0)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\right)^{-1} \tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} & { }^{-\boldsymbol{\Gamma}_{k}^{-1}} \tilde{\boldsymbol{\gamma}}_{k}\left(\gamma(0)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\right)^{-1} \\
-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1}\left(\gamma(0)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\right)^{-1}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\gamma}_{k} \\
\vdots \\
\gamma(k+1)
\end{array}\right] \\
& =\left[\begin{array}{c}
\boldsymbol{\Gamma}_{k}^{-1} \boldsymbol{\gamma}_{k}+\boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\left(\gamma(0)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\right)^{-1} \tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} \boldsymbol{\gamma}_{k}-\boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\left(\gamma(0)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\right)^{-1} \gamma(k+1) \\
-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1}\left(\gamma(0)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} \tilde{\gamma}_{k}\right)^{-1} \boldsymbol{\gamma}_{k}+\left(\gamma(0)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}\right)^{-1} \gamma(k+1)
\end{array}\right]
\end{aligned}
$$

Replacing $\boldsymbol{\Gamma}_{k}^{-1} \boldsymbol{\gamma}_{k}$ with \mathbf{a}_{k} and $\boldsymbol{\Gamma}_{k}^{-1} \tilde{\boldsymbol{\gamma}}_{k}$ with $\tilde{\mathbf{a}}_{k}$, we have

$$
\left[\begin{array}{c}
a_{k+1,1} \\
\vdots \\
a_{k+1, k+1}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{a}_{k}-\frac{\gamma(k+1)-\tilde{\gamma}_{k}^{T} \mathbf{a}_{k}}{\gamma(0)-\tilde{\gamma}_{k}^{T} \tilde{\mathbf{a}}_{k}} \tilde{\mathbf{a}}_{k} \\
\frac{\gamma(k+1)-\tilde{\gamma}_{k}^{T} \mathbf{a}_{k}}{\gamma(0)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \tilde{\mathbf{a}}_{k}}
\end{array}\right] .
$$

From this we see that we can write

$$
\begin{aligned}
a_{k+1, k+1} & =\frac{\gamma(k+1)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \mathbf{a}_{k}}{\gamma(0)-\gamma_{k}^{T} \mathbf{a}_{k}} \\
\left(a_{k+1,1}, \ldots, a_{k+1, k}\right)^{T} & =\mathbf{a}_{k}-a_{k+1, k+1} \tilde{\mathbf{a}}_{k},
\end{aligned}
$$

noting that $\tilde{\gamma}_{k}^{T} \tilde{\mathbf{a}}_{k}=\gamma_{k}^{T} \mathbf{a}_{k}$. With this recursive algorithm we can find \mathbf{a}_{k+1} from \mathbf{a}_{k} without having to invert the matrix $\boldsymbol{\Gamma}_{k+1}$. We can make one further tweak so that computation is even faster: Set $v_{k}=\gamma(0)-\boldsymbol{\gamma}_{k}^{T} \mathbf{a}_{k}$ for $k \geq 1$ and $v_{0}=\gamma(0)$. Then we have

$$
\begin{aligned}
v_{k} & =\gamma(0)-\gamma_{k}^{T} \mathbf{a}_{k} \\
& =\gamma(0)-\gamma(k) a_{k, k}-\gamma_{k-1}^{T}\left(a_{k, 1}, \ldots, a_{k, k-1}\right)^{T} \\
& =\gamma(0)-\gamma(k) a_{k, k}-\gamma_{k-1}^{T}\left(\mathbf{a}_{k-1}-a_{k, k} \tilde{\mathbf{a}}_{k-1}\right) \\
& =v_{k-1}-a_{k, k}\left(\gamma(k)-\boldsymbol{\gamma}_{k-1}^{T} \tilde{\mathbf{a}}_{k-1}\right) \\
& =v_{k-1}-a_{k, k} \frac{\left(\gamma(k)-\boldsymbol{\gamma}_{k-1}^{T} \tilde{\mathbf{a}}_{k-1}\right)}{\gamma(0)-\boldsymbol{\gamma}_{k-1}^{T} \mathbf{a}_{k-1}}\left(\gamma(0)-\boldsymbol{\gamma}_{k-1}^{T} \mathbf{a}_{k-1}\right) \\
& =v_{k-1}-a_{k, k}^{2} v_{k-1} \\
& =v_{k-1}\left(1-a_{k, k}^{2}\right) .
\end{aligned}
$$

This allows us to define the algorithm as described in the following section.

Recursive computation of coefficients with the Durbin-Levinson algorithm:

Set

$$
v_{0}=\gamma(0) \quad \text { and } \quad a_{1,1}=\gamma(1) / \gamma(0),
$$

and then for $k=1, \ldots, n$ perform the recursions

$$
\begin{aligned}
v_{k} & =v_{k-1}\left(1-a_{k, k}^{2}\right) \\
a_{k+1, k+1} & =\left(\gamma(k+1)-\tilde{\boldsymbol{\gamma}}_{k}^{T} \mathbf{a}_{k}\right) / v_{k} \\
\left(a_{k+1,1}, \ldots, a_{k+1, k}\right)^{T} & =\mathbf{a}_{k}-a_{k+1, k+1} \tilde{\mathbf{a}}_{k} .
\end{aligned}
$$

The one-step-ahead predictions are then computed as

$$
P_{k} X_{k+1}= \begin{cases}0 & \text { if } k=0 \\ \mathbf{a}_{k}^{T} \tilde{\mathbf{X}}_{k} & \text { if } k=1, \ldots, n,\end{cases}
$$

where $\tilde{\mathbf{X}}_{k}=\left(X_{k}, \ldots, X_{1}\right)^{T}$ for $k=1, \ldots, n$.
Note: We obtain $v_{0}=\gamma(0)$ by considering the case $k=1$. Also, the values $v_{0}, v_{1}, \ldots, v_{n}$ are the MSPEs for the predictions.
The following R code defines a function for running the Durbin-Levinson algorithm and applies it to a simulated data set from an MA(q) model:

```
DL.1step <- function(X,gamma.0,gamma.n){
    n <- length(X)
    X.pred <- numeric(n+1)
    X.pred[1] <- 0
    alpha <- numeric(n)
    v <- numeric(n+1)
    v[1] <- gamma.0
    a.k <- gamma.n[1] / gamma.0
    alpha[1] <- a.k
    for(k in 1:(n-1))
    {
        X.pred[k+1] <- sum( a.k * X[k:1] )
        v[k+1] <- v[k]*(1 - a.k[k]^2)
        a.kplus1 <- numeric(k+1)
        a.kplus1[k+1] <- ( gamma.n[k+1] - sum( gamma.n[k:1] * a.k ) ) / v[k+1]
        a.kplus1[1:k] <- a.k - a.kplus1[k+1] * a.k[k:1]
        a.k <- a.kplus1
        alpha[k+1] <- a.kplus1[k+1]
    }
    X.pred[n+1] <- sum(a.k * X[n:1] )
```

```
        output <- list( X.pred = X.pred,
        alpha = alpha,
        v = v)
    return(output)
}
# generate some data from an MA(q) model
n <- 100
theta <- c(1,.8,.6,.5,.25,.1,.1,.95)
q <- length(theta) - 1
Z <- rnorm(n+q,0,1)
X <- numeric(n)
for( t in 1:n)
{
        ind <- q + t:(t-q)
        X[t] <- sum( theta * Z[ind] )
}
# construct vector of autocovariances to use in the DL algorithm
gamma.0 <- 1 * sum(theta^2)
gamma.n <- numeric(n)
for(h in 1:q)
{
    gamma.n[h] <- sum(theta[1:(q - h + 1 )]*theta[ ( 1 + h ) : ( q + 1 ) ])
}
# run the Durbin-Levinson algorithm in centered data, then add center back
X.pred <- DL.1step(X-mean(X),gamma.0,gamma.n)$X.pred + mean(X)
# plot original series as well as one-step-ahead predictions
plot(X,xlim=c(1,n+1),xlab="Time",type="l",ylim=range(X,X.pred))
points(X.pred)
abline(h=0,lty=3)
```


Fast one-step- and h-step-ahead forecasting with the innovations algorithm

Another algorithm with which we can compute one-step-ahead forecasts without inverting large matrices is the so-called innovations algorithm. This algorithm does not require stationarity, though it assumes a constant mean. In this section we consider a time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ such that $\mathbb{E} X_{t}=0$ for all $t \in \mathbb{Z}$, we and define $\kappa(i, j)=\mathbb{E} X_{i} X_{j}$ for $i, j \in \mathbb{Z}$.

For $k=1,2, \ldots$ define the matrices $\mathbf{K}_{k}=(\kappa(i-j))_{1 \leq i, j \leq k}$, and assume that these are nonsingular matrices. Then define the one-step-ahead predictions $\hat{X}_{1}, \ldots, \hat{X}_{n}$ of X_{1}, \ldots, X_{n} as

$$
\hat{X}_{k+1}= \begin{cases}0 & \text { if } k=0 \\ \sum_{j=1}^{k} a_{k, j} X_{k+1-j} & \text { if } k=1, \ldots, n-1\end{cases}
$$

where $\mathbf{a}_{k}=\left(a_{k, 1}, \ldots, a_{k, k}\right)^{T}$ is given by

$$
\mathbf{a}_{k}=\underset{\mathbf{a} \in \mathbb{R}^{k}}{\operatorname{argmin}} \mathbb{E}\left(X_{k+1}-\mathbf{a}^{T} \tilde{\mathbf{X}}_{k}\right)^{2}=\mathbf{K}_{n}^{-1}(\kappa(k, k+1), \ldots, \kappa(1, k+1))^{T}
$$

for $k=1, \ldots, n-1$. Define the vector $\hat{\mathbf{X}}_{n}=\left(\hat{X}_{1}, \ldots, \hat{X}_{n}\right)^{T}$ and let $\mathbf{U}_{n}=\hat{\mathbf{X}}_{n}-\mathbf{X}_{n}$, so that \mathbf{U} contains the one-step-ahead prediction errors. We can call these the "innovations". Define the matrix

$$
\mathbf{A}_{n}=\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \\
a_{1,1} & 0 & 0 & \ldots & 0 & 0 \\
a_{2,2} & a_{2,1} & 0 & \ldots & 0 & 0 \\
a_{3,3} & a_{3,2} & a_{3,1} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 & 0 \\
a_{n-1, n-1} & a_{n-1, n-2} & a_{n-1, n-3} & \ldots & a_{n-1,1} & 0
\end{array}\right]
$$

so that $\hat{\mathbf{X}}_{n}=\mathbf{A}_{n} \mathbf{X}_{n}$. Then we see that we may write

$$
\mathbf{U}_{n}=\left(\mathbf{I}-\mathbf{A}_{n}\right) \mathbf{X}_{n}
$$

Moreover, since $\left(\mathbf{I}-\mathbf{A}_{n}\right)$ is non-singular, we may write

$$
\left(\mathbf{I}-\mathbf{A}_{n}\right)^{-1} \mathbf{U}_{n}=\mathbf{X}_{n}
$$

where $\left(\mathbf{I}-\mathbf{A}_{n}\right)^{-1}=\left(\mathbf{I}+\boldsymbol{\Theta}_{n}\right)$, where the matrix $\boldsymbol{\Theta}_{n}$ has the form

$$
\boldsymbol{\Theta}_{n}=\left[\begin{array}{cccccc}
0 & 0 & 0 & \ldots & 0 & 0 \\
\theta_{1,1} & 0 & 0 & \ldots & 0 & 0 \\
\theta_{2,2} & \theta_{2,1} & 0 & \ldots & 0 & 0 \\
\theta_{3,3} & \theta_{3,2} & \theta_{3,1} & \ldots & 0 & 0 \\
\vdots & \vdots & \vdots & \ddots & 0 & 0 \\
\theta_{n-1, n-1} & \theta_{n-1, n-2} & \theta_{n-1, n-3} & \ldots & \theta_{n-1,1} & 0
\end{array}\right]
$$

Then we may write

$$
\begin{aligned}
\hat{\mathbf{X}}_{n} & =\mathbf{X}_{n}-\left(\mathbf{I}-\mathbf{A}_{n}\right) \mathbf{X}_{n} \\
& =\left(\mathbf{I}-\mathbf{A}_{n}\right)^{-1} \mathbf{U}_{n}-\mathbf{U}_{n} \\
& =\left(\mathbf{I}+\boldsymbol{\Theta}_{n}\right) \mathbf{U}_{n}-\mathbf{U}_{n} \\
& =\boldsymbol{\Theta}_{n} \mathbf{U}_{n}
\end{aligned}
$$

This gives

$$
\hat{X}_{k+1}= \begin{cases}0 & \text { if } k=0 \\ \sum_{j=1}^{k} \theta_{k, j}\left(X_{k+1-j}-\hat{X}_{k+1-j}\right) & \text { if } k=1, \ldots, n-1\end{cases}
$$

We find that we can compute the values $\theta_{n, j}, j=1, \ldots, n, n=1,2, \ldots$ recursively, allowing fast computation of the one-step-ahead predictions. This is described in the following section.

Recursive computation of coefficients with the innovations algorithm:
Set $v_{0}=\kappa(1,1)$. Then for $k=1, \ldots, n-1$, set

$$
\theta_{k, k}=v_{0}^{-1} \kappa(k+1,1)
$$

and then

$$
\theta_{k, k-j}=v_{j}\left[\kappa(k+1, j+1)-\sum_{l=0}^{j-1} \theta_{j, j-l} \theta_{k, k-l} v_{l}\right], \quad \text { for } \quad j=1, \ldots, k-1
$$

and

$$
v_{k}=\kappa(k+1, k+1)-\sum_{l=0}^{k-1} \theta_{k, k-l}^{2} v_{l}
$$

Moreover, we find that we can get the h-step-ahead predictions $\hat{X}_{n+h}, h=1,2, \ldots$ according to

$$
\hat{X}_{n+h}=\sum_{j=h}^{n+h-1} \theta_{n+h-1, j}\left(X_{n+h-j}-\hat{X}_{n+h-j}\right)
$$

where the values of $\theta_{n+h-1, j}, j=h, \ldots, n+h-1, h=1,2, \ldots$ can be found by continuing the recursions, but with

$$
v_{n+h}=\kappa(n+h, n+h)-\sum_{j=h}^{n+h-1} \theta_{n+h-1, j}^{2} v_{n+h-j}
$$

(see pg. 167 of B\&D Theory). As with the Durbin-Levinson algorithm, the values $v_{0}, \ldots, v_{n}, v_{n+1}, \ldots, v_{n+h}$ are the MSPEs for the predictions.

The following R code implements h-step ahead forecasting with the innovations algorithm:

```
# build a function to perform the innovations algorithm
innov.hstep<- function(X,h,K){
#
# X = vector of data values
# h = number of step ahead for which to predict
# K = covariance matrix of X_1,dots,X_{n+h}
#
    n <- length(X)
    v <- numeric(n+h)
    X.pred <- numeric(n+h)
    Theta <- matrix(NA,n+h,n+h)
    v[1] <- K[1,1]
    X.pred[1] <- 0
    Theta[1,1] <- K[2,1] / v[1]
    v[2] <- K[2,2] - Theta[1,1] 2*v[1]
    X.pred[2] <- Theta[1,1]*X[1]
    for(k in 2:n)
    {
        Theta[k,k] <- K[k+1,1] / v[1]
        for(j in 1:(k-1))
        {
            Theta[k,k-j] <- (K[k+1,j+1]-sum(Theta[j,j:1]*Theta[k,k:(k-j+1)]*v[1:j]))/v[j+1]
        }
        v[k+1] <- K[k+1,k+1] - sum( Theta[k,k:1]^2 * v[1:k] )
        X.pred[k+1] <- sum( Theta[k,1:k] *(X[k:1] - X.pred[k:1]) )
    }
    for(k in (n+1):(n+h-1))
    {
        Theta[k,k] <- K[k+1,1] / v[1]
        for(j in 1:(k-1))
        {
```

```
            Theta[k,k-j]<-(k[k+1,j+1]-sum(Theta[j,j:1]*Theta[k,k:(k-j+1)]*v[1:j]))/v[j+1]
        }
    v[k+1] <- K[k+1,k+1] - sum( Theta[k,(k-n+1):k]^2 * v[n:1] )
        X.pred[k+1] <- sum( Theta[k,(k-n+1):k] *(X[n:1] - X.pred[n:1]) )
    }
    output <- list( X.pred = X.pred,
        v = v)
    return(output)
}
# generate some data from an MA(q) model
n <- 100
theta <- c(1,.8,.6,.5,.25,.1,.1,.95)
q <- length(theta) - 1
Z <- rnorm(n+q,0,1)
X <- numeric(n)
for( t in 1:n)
{
        ind <- q + t:(t-q)
        X[t] <- sum( theta * Z[ind] )
}
# construct covariance matrix K
h <- 10
gamma.0 <- 1 * sum(theta^2)
gamma.nplush <- numeric(n+h)
for( l in 1:q )
{
        gamma.nplush[l] <- sum(theta[1:(q - l + 1 )]*theta[ ( 1 + l ) : ( q + 1 ) ])
}
K <- matrix(NA,n+h,n+h)
for(j in 1:(n+h))
    for(i in 1:(n+h))
        {
            K[i,j] <- c(gamma.0,gamma.nplush)[1+abs(i-j)]
        }
# run the innovations algorithm in centered data, then add mean back
X.pred <- innov.hstep(X-mean(X),h,K)$X.pred + mean(X)
# plot original series as well as predictions
plot(X,xlim=c(1,n+h),xlab="Time",ylim=range(X,X.pred),type="l")
points(X.pred)
```

```
abline(h=0,lty=3)
```


The partial autocorrelation function

In addition to the autocorrelation function, another function, called the partial autocorrelation function (pacf), carries information about the dependence structure of a stationary time series. For a stationary time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ with mean 0 and any random variable Y, define

$$
P_{\overline{\mathrm{Sp}}\left\{X_{2}, \ldots, X_{k}\right\}} Y=\sum_{j=2}^{k} a_{j} X_{j}
$$

where a_{2}, \ldots, a_{k} are the values which minimize the expression

$$
\mathbb{E}\left(Y-\sum_{j=2}^{k} a_{j} X_{j}\right)^{2}
$$

So $P_{\overline{\mathrm{sp}}\left\{X_{2}, \ldots, X_{k}\right\}} Y$ is the projection of Y onto the space spanned by X_{2}, \ldots, X_{k}. The partial autocorrelation function $\alpha(\cdot)$ is given by

$$
\alpha(k)=\operatorname{Corr}\left(X_{k+1}-P_{\overline{\mathrm{sp}}\left\{X_{2}, \ldots, X_{k}\right\}} X_{k+1}, X_{1}-P_{\overline{\mathrm{Sp}}\left\{X_{2}, \ldots, X_{k}\right\}} X_{1}\right)
$$

for $k=1,2, \ldots$ We can interpret $\alpha(k)$ as the correlation between X_{k+1} and X_{1} after accounting for the effects of the intermediate random variables X_{2}, \ldots, X_{k}. That is, if we were to regress both X_{k+1} and X_{1} onto X_{2}, \ldots, X_{k} and get the residuals, the correlation between these residuals would be equal to $\alpha(k)$.

Interestingly, it turns out that the Durbin-Levinson algorithm computes the partial autocorrelations $\alpha(1), \ldots, \alpha(n)$ as it goes through its recursions. In fact, the partial autocorrelations are equal to

$$
\alpha(k)=a_{k, k}, \quad \text { for } k=1, \ldots, n .
$$

We will discuss the pacf more later on.

Building prediction intervals for Gaussian processes

For a stationary time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ in which each X_{t} has a Normal distribution, prediction intervals can be constructed using quantiles from the Normal distribution according to

$$
\hat{X}_{k+1} \pm z_{\alpha} \sqrt{v_{k}}, \quad k=1, \ldots, n+h-1
$$

where z_{α} is the upper α quantile of the standard Normal distribution and where the MSPEs v_{1}, \ldots, v_{n+h-1} can be obtained from the innovations algorithm. The R code below implements this on the data set from in the previous chunk of R code.

```
innov.hstep.out <- innov.hstep(X-mean(X),h,K)
X.pred <- innov.hstep.out$X.pred + mean(X)
v <- innov.hstep.out$v
lo.pred <- X.pred - 1.96 * sqrt(v)
up.pred <- X.pred + 1.96 * sqrt(v)
# plot original series as well as predictions with prediction limits
plot(X,xlim=c(n-10,n+h),xlab="Time",type="l",ylim=range(X,lo.pred,up.pred))
points(X.pred)
lines(lo.pred,lty=3 )
lines(up.pred,lty=3)
abline(h=0,lty=3)
```


