



































































































































SPECTRAL ANALYSIS OF TIME SERIES

The idea is to decompose the time series as a sum of
sinusoidal functions of different frequencies

Deff Discrete Fourier TransformDLF

The DIT of a vector is the vector D D D
with entries given by

Dj En Xteopl.lt j I n

where 7 In are the Values frequencies

E ui a LEI LI fcl i.M
What is the DFT Define the men matrix En as

expfiza explizit

ertzta inE Eh
1 expfens t
K K

For any KEE we have X at zb for home a b c IR

Denote by I the complex conjugate a zb of

For a vector µ n NIE E let

For an nem matrix VEE with columns µ zuletzt

Now we may write

BEETEN 12J






































































































































The columns En Enm of En form an orthonormal basis for C
under the inner product a b üb ta.be C Note that

Emi En tf explatz egsfet
In exp AG 7

2 if i j

if it

so EEE In where In is the nen identity matrix

Because of the above we have

In EI LEIEIEIIN

so that the entries of In are the coefficients resulting from
the regression of X Xu onto the columns of En i e
from the projection of In onto to which it already belongs
using the columns of En as a basis for E

Since In c Colle we have

In ELEI E EIL
giving

In Enden

which can be written as

In D expfett
This is like an inverse to the DFT which gives the data
X X in terms of the coefficients D D 1






































































































































Interpretation of DFT

The relative magnitudes of D Du show the relative
prevalence in X Xu of the frequencies 7 In

This brings vs to the periodogram

For KEE let 1 1 55 so for Kathi 1 1 5 6

DIE The period of X X is the function given by

Inla tlE.Xtexpl.it

We have In ID for j I.i.sn

We can make a plot of the periodogram to see which
frequencies am dominant in the data If we want we can
use the inverse to the DFT to reconstruct the series using
a smaller number of dominant frequencies

R example

The population version of the periodogram is the spectral
density function which we discuss next

Suppose X Xu come from a stationary t.si Xt tE2 with
auf ff and consider taking the expection of the periodogram
and finding its limit as an We have

2

F In Et expfzt

In expfzt E X exples

L e.gs zsls tDEXXs






































































































































In expfzxls.tl tlt s

d E e.pl a Kh
h n

Taking the limit as nix gives

II ING II Ein.sk expfzxh tlh

E.fr adhknexpfnh tlh

8
E expt.in Kh
h p

We now defin the spectral density

Def The putrefy of a stationary t.s.SI t tE2
with auf 6C is

f G I expt.tn tlh for vo

Ruf FG fing In

We now establish some properties of the spectral density function

Result The spectral density has the following properties

a f ft

b f o for all c C T.IT

Kh einfach cos tads






































































































































Proof For a we have

1G E wslhdtz.sn ha tCh

E wslhdtlt.tt E sind Kh

E costs Kh o

ff

where the third equality comes from the fact that cost is
an even function and that since sink is an odd function

f ninth Kh Iink Kh tsinlo.DK t sina.DK
o

sin kWh t ein h Kh
h

0

For b we note that since JA like ING when
EIN G 70 for each hat as we previously showed we have f 70

For c we have for any KER

fjexpknjfhda fjeg.lk EI pG Kh da

I.gg zalhhDtlh da






































































































































E Khl expkalh.tn da

Hk
2T if k h

if k 4

Example Spectral density of WNCO.gr The autocovariance Junction
of 2 Ezln WNLO.si is

Kh
for hero
for h

so that the spectral density is

Hat I expfzhdtlhl.bz I
for all 7

The following result gives an expression for the periodogram
in terms of the sample autouvariance function

Result The periodogram based on X X ER satisfies

n 1

Inla Kh e for ja snh n

where 7 D am the Fourier frequencies

E h LEI LI IcC ii in

and Öl is the sample auf

We have

2

Ink t.EXtexpl.tt






































































































































2

II eepfzt.IT Eine.gs zta
t

eseaja0
Fourierfrog

t 4 F Hs F expl zlt.sk

n an t lxt FNXtthl xnexpl.ch

n I

äh expleha
h nD

This result tempts us to use a Inla to estimate flat
We find however that it is not a consistent estimator We
discuss this more later on

SPECTR ENSITI ESOFAR.UA p.g PR0CESSES

In this section we derive an expression for the spectral density
of an ARMALpg process in terms of the ARMA coefficients top
and 0 and the white noise variance o

We begin with the following result

4 Thu44I B Theory Let 4,62 be a stationary possibly
complexvalued t.es with spectral density by and let

4 7 4 Yt for all taz

for home 4J JEZ satisfying MILD Then the spectral
density of Xt TEL is 5 8

4 14K c

8
where 4L 4in

j 8






































































































































RI The auf of EITER at lag h is

EXTXtth E.IE jYtjIj4nFtth h

EIEIY.in lh htD

eEg4iInfexpklh htDx G da

exple ifeng.fm exp zhx fyHda

fjexpkha fEih.expkix tylDda

Hat
Since this is true for all HER we see based on property e
of the spectral density from pg 4 tht the spectral density of
Xhtml is given by

2

4 II 4 expkj.nl tyH
which is the claim

We can now quite easily derive the form of the spectral density
for ARMACp.gl processes

Resuft ht IXt.to be an ARMAGH prows defined by

014334 043 44,4623NWNlo.si
where 01L and Oli have no common zeroes and OIC
has no zeroes on the unit circle and such that
Xt TER is not necessarily causal or invertible






































































































































Then the spectral density of SXt.t.CZ is given by

tote
14Ce 4 12

TEXEM

Proof Whether Xt TER is causal or noncausal we may write

4 Zz with EMI
g D

Now set 4 443 043127 and not that by the
previous result we may write

f tolle G loleiDIII sei

where Juli is the spectral density of 4 TEL and where
Ml is the WNLO.si spectral density Rearranging this
gives

Kk _IIIotetolle T

Example Spectral density ofMAG process

ht X 0 for all TEL where zt.tc zl WNCO.si

Then the spectral density of TER is

III Ito f

EKItocosGDtlos.nl
21T

In It 20ns a 02ns G to's.it
21T

If It 20ns G to

for Taner






































































































LAG WINDOW ESTIMATOR OF THE SPECTRAL DENSITY

We have said that even though

II E In µ Esso

we should not use In as an estimator of TG
because it is inconsistent in spite of being asymptotically
unbiased the property expressed above

The following result gives the asymptotic joint distribution of a vector
of periodogram ordinates and we can see from this result
that Inla cannot be a consistent estimator of fca

Reif FromThun 10.32 of B Theory

Let Xhtc.LI be a linear process

4,7 127,62 IIDCo.si

where 14dL and denote by H the spectral density of Xt.ttje 8
Let In L be the periodogram based on X Xu then if
FG V XEE M.IT the periodogram ordinates

InC Intim for any 2 im ECO

am asymptotically distributed as independent exponential randomvariables
with means f them respectively

From this theorem we have

nliygVarInkD IILDforanyaECo.i

We find however that we can construct a consistent estimator for f
by locally averaging or smoothing the periodogram ordinates at the Fourier
frequencies We get consistency because as n 70 there are an increasing
number of Fourier frequencies in the neighborhood S Ito 8 0 of anyDECO M See 10.4 of BRDTheory for details



Instead of smoothing the perrodogram ve will focus on another way
to construct a consistent estimator of the spectral density This
type of estimator is called a lagwindow estimator

Recall that the periodogram is given by

n

I G Inch uplink
h n

We consider now the fact that the value of the sample auf
Öl at lag h is based on n Ihl pairs of observed data
so that at greater lags I C is based on fewer data points
As a result the sample auf has a larger variance
at larger lags The basic idea of lag window estimation
of the spectral density is to truncate the sample auf such
that we set its value to Zero at larger lags Then we
compute the periodogram based on this truncated sample auf

The basic form of the lag window estimator of the spectral
density ft

ist KHexptn.tn

so that the terms in the periodogram from Öllt Ilm are
discarded More generally the lagwindow estimator takes the following form

Deff Given a sample auf Öl and a choice of L
the ag dowestim.tn of the spectral density te
is given by

ÄH w E Kh expfzah a an

where Wk is an even piecewise continuous function such that
i WH 0 for all 1 1 2

Ei Wto 2

IWC 2 for all 1 142

Rezak The estimator FIT used WG 1 KIEL 122J



One example of a choice of the function we is the Parz windor

1 6 2 61 1

wirf c mi f
1 1 2 2 k o k s

Lets not forget the trapezoid

2

wir dixi k

1 1 2 2 42 2

Under an appropriate choice of L the lagwindow estimator of the
spectral density is consistent as the following result claims

12 Let EITER be the linear process

Xt 4,27 Zytek NIIDlo.si

with j ahf.lk aDandEZI Then under
choices of L such that and L m o as nr as
we have

a fG in probability

for each AEE T.IT

We conclude with a result which allows one to derive from
a given spectral density the coefficients of the MACH
representation of the time series provided the letter exists

This result can be used to generate time series data
from a proves having a given spectral density



REI Let Hat ER be a stationary Es with spectral
density f that satisfies

logflada

Then Xt.tt has a unique MAL representation

Cj TER

where Zytek WNLO.si and where the coefficients
Cj 91,2 satisfy f ICH 0 and moreover can be
found as follows

Set

am eopfzhjlogfc.rsda hast

and 2 Then 4,4 am given by the recursion

µ l anti jcjgk o.bz

In addition E 2T exp a

The above result is adapted from

Krampe Ja Kreiss 5 Pc Paparoditis E 20 8 Estimated Wold
representation and spectral density driven bootstrap for time series
TRSSB Series B Statistical Methodology 8041,703 726

To generate data from a t.sn with a given spectral density f
so long as log1Gda o we can find the coefficients
Co 4,4 of the MAC representation truncating them at some
large value and then generate data from the moving average model


