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This lecture will make use of the tscourse package, which is installed with the following R code:

library(devtools)
devtools: :install_github("gregorkb/tscourse")
library(tscourse)

Two tests for white noise

Given a realization X, ..., X, from a time series {Xy,t € Z}, we are interested in testing the hypotheses
Hy: {X;,t € Z} are white noise versus Hi: {X;,t € Z} are not white noise.

We are often interested in these hypotheses when the time series {X;,t € Z} represents residuals after
removing a trend and a seasonal component from a time series or when {X;,t € Z} are prediction errors
based on a time series model, such as an ARMA(p, ¢) model. If our residuals behave like white noise, then
our model has accounted for temporal dependence. We consider two tests, one based on the periodogram and
one based on the sample autocorrelation function.

The Ljung-Box test

The Ljung-Box test is based on the asymptotic distribution of the sample autocorrelations, and it specifically
tests the hypotheses

Hy: {X:,t € Z} are iid versus Hp: {X;,t € Z} are not iid.

Result leading to the Ljung-Box test

For any positive integer k, let p;, = (pn(1),...,pn(k))T and p, = (p(1),...,p(k))T, where p,(-) and p(-) are
the sample and true autocorrelation functions of the times series {X,t € Z}, respectively. Then Theorem
7.2.2 of B&D Theory gives

Vn(p, — pi) — Normal(0, W)  in distribution,

as n — 0o, where Wy, is the k x k matrix with entries given by

o0

wig = Y _[p(l+1) + p(l = i) = 2p(0)pD][p(L + §) + p(L = §) = 2p()p(D)], 1< i, <k
=1

Under Hy, we have
o 1’ 7 :j
YT 0 A

so that Wy, is the k£ x k identity matrix. This implies that under Hy, we have

k
nz pn(D)?> = X2 in distribution,
=1



as n — oo. This suggests use of the test statistic

and the rejection rule which rejects Hy at level o when @ exceeds the upper a quantile of the x3 distribution.
Ljung and Box (1978) present a modification of this test statistic under which the test has closer-to-nominal
size.

Test statistic and decision rule for the Ljung-Box test
The Ljung-Box test statistic is .
Quo = n(n+2) " pu1)*/(n 1),
=1
and the rejection rule of the Ljung-Box test is
Reject Hy at level « if and only if Qrg > Xia,

where xj , is the upper a quantile of the x3 distribution.

The following R code defines a function for computing the Ljung-Box test and illustrates it on a dataset:

WNtest.LB <- function(X,k=1,nparms=0)

{
n <- length(X)
if(k > n-1)
stop("k must be less than n")
if(k <= nparms)
stop("k must be greater than nparms")
rho.k <- sample.acf(X)$rho.hat[2: (k+1)]
Q.LB <- n*(n+2) * sum( rho.k"2 / (n - 1:k))
pval <- 1 - pchisq(Q.LB,k-nparms)
return(pval)
}
n <- 100

X <- rnorm(n)

WNtest.LB(X)

## [1] 0.3900936

We have not addressed how to choose the value of k. The following simulation computes the size and power
of the Ljung-Box test under the AR(1) model under different values of the AR(1) parameter ¢ and under the
choices k =1,...,10:

phi <- c(0,.1,.2,.3,.4,.5)

S <- 500
B <- 100
n <- 50



K <- 10
alpha <- 0.05
prej <- matrix(NA,K,length(phi))

for(j in 1:length(phi))

{
if (§==1)
{
XX <- matrix(rnorm(n*S),S,n)
} else {
XX00 <- get.ARMA.data(phi=phi[j],theta=NULL,sigma=1,n=S*(B+n))
XX0 <- matrix(XX00,S,B+n,byrow=TRUE)
XX <- XX0[,1:n]
}
for(k in 1:K)
{
prejlk,j] <- mean(apply(XX,1,WNtest.LB,k=k) < alpha)
}
}
rownames (prej) <- paste( "k =" ,1:K)
colnames(prej) <- paste( "phi =" ,phi)
library (knitr)
kable(prej)

phi=0 phi =0.1 phi=0.2 phi=0.3 phi=04 phi=0.>5

k=1 0.048 0.084 0.228 0.468 0.720 0.922
k=2 0.056 0.070 0.180 0.372 0.656 0.856
k=3 0.050 0.072 0.144 0.334 0.552 0.826
k=4 0.046 0.068 0.144 0.298 0.534 0.794
k=5 0.050 0.068 0.140 0.276 0.518 0.760
k=6 0.052 0.072 0.134 0.280 0.496 0.726
k=7 0.068 0.066 0.124 0.276 0.476 0.722
k=38 0.064 0.070 0.134 0.274 0.456 0.696
k=9 0.064 0.068 0.124 0.274 0.436 0.684
k=10 0.052 0.086 0.124 0.276 0.416 0.684

The table shows the proportion of times the Ljung-Box test rejected the null hypothesis over the 500 simulation
runs. Based on the simulation output, kK = 1 seems to be the best choice under these settings, as it controls
the Type I error rate and results in the greatest power.



Bartlett’s test

Bartlett’s test is based on the periodogram, and it is a test of the hypotheses
Hy: {X:,t € Z} are iid Normal versus Hi: {X¢,t € Z} are not iid Normal.

It is based on considering how the periodogram ordinates would behave if {X;,t € Z} were iid Normal(0, 0%)
random variables. Then it asks, “how different are the periodogram ordinates of the data from those we
would expect under iid Normality?” The test is based on the following two results:

The first result is from Proposition 10.2.1 of B&D Theory: Suppose {X;,t € Z} are iid Normal(0, ¢?) random
variables and let I,(A1),. .., I,(\,) be the periodogram ordinates based on X7, ..., X,,, where A1,..., A, are
the Fourier frequencies (2/n)k, k = —|(n —1)/2],...,|n/2]. Then the joint distribution of the random

variables )
7 I
v Sha b0
2 k=1 In(Ak)
where ¢ = [(n — 1)/2], is the same as the joint distribution of the order statistics of a random sample of size
g — 1 from the Uniform(0, 1) distribution.

yeeeyq— 1,

The second result comes from Feller (1948): Let Uj,...,U, be a random sample from the from the
Uniform(0, 1) distribution and let Uy < --- < Uy be the order statistics. Then

]{j (o)
lim P U — —|<a)= —1)7 exp(—2a*5°).
im (max \/Fn‘ (k) m_a) Z( ) exp(—2a°j°)

m— o0 1<k<m .
j=—o0

Note that k/m is the height of the Uniform(0, 1) cdf at k/m and Uy is the height of the empirical distribution
of Uy,..., Uy at k/m, so the quantity

is a comparison between the empirical distribution of the sample Uy, ..., U,, and the Uniform(0, 1) cdf.

Test statistic and decision rule for Bartlett’s test

The test statistic for Bartlett’s test is constructed by comparing Y7, ..., Y;_1 to the heights of the Uniform(0, 1)
cdf at 1/(¢ —1),...,1. The test statistic is

B = max {/q—1

1<k<1

k
Yi ’ |
q—1
The rejection rule at level « is

o0
Reject Hy if and only if Z (—1)? exp(—2B?j?) < a.

j=—o0

Note that the above is just a comparison of the p-value to the significance level a. The following R code
defines functions for computing Bartlett’s test statistic and implements the test on simulated data. The plot
printed is the empirical distribution of Yi,...,Y;_1, and the test rejects at the 0.05 and 0.01 levels if the
points fall outside of the solid or dotted lines, respectively.

# This function computes the periodogram at the Fourier frequencies.
pgram <- function(X,plot=FALSE)
{

n <- length(X)



lambda <- (-floor((n-1)/2):floor(n/2))/n*2*pi

E <- matrix(NA,n,n)
for(i in 1:n)
{
E[i,] <- 1/sqrt(n) * exp(lixi*lambda)
}

# compute discrete Fourier transform of X
D <- as.vector(t(Conj(E)) %x% X)
I <- Mod(D)"2

if (plot == TRUE)
{

plot (I[lambda>0] ~lambda[lambda>0],type="0")
}

# compute cumulative periodogram
YO <- cumsum(I[lambda < 0]) / sum(I[lambda < 0])
Y <- YO[-length(Y0)]

output <- list( I = I,
lambda = lambda,
Y =1Y)

return(output)

# This function performs Bartlett's test for whether the time series is iid Gaussian.
WNtest.Bartlett <- function(X,plot=FALSE)
{

Y <- pgram(X)$Y
q <- length(Y) + 1

# compute test statistic
dev <-sqrt(q-1) * abs(Y - c(1:(q-1))/(g-1))
B <- max(dev)

# get p-value
j <= ¢(-100:100)
pval <= 1 - sum( (-1)7j * exp(-2*B"2%j~2) )

if (plot == TRUE)
{
plot(Y,
main=paste("Bartlett test: p val = ",round(pval,3),sep=""),
xlab="frequencies",
ylab="cumulative periodogram",
col = ifelse( dev > 1.36,"red","black" ),
pch = ifelse( dev > 1.36,19,1 ))
abline(-1.36/sqrt(q-1),1/(g-1))



abline(+1.36/sqrt(q-1),1/(q-1))

abline(-1.63/sqrt(q-1),1/(q-1),1ty=3)

abline(+1.63/sqrt(q-1),1/(q-1),1ty=3)
}

return(pval)

}

X <- rnorm(100)
WNtest.Bartlett (X,plot=TRUE)

Bartlett test: p val = 0.067
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## [1] 0.06678687

Goodness of fit testing for ARMA models

When we fit a model to time series data, we would like to know whether we have correctly modeled the
dependence structure. To see how well our model fits the data, we study the “residuals” of the fitted model.
What are the residuals? Before defining the residuals of a fitted time series model, we first consider the
one-step-ahead prediction errors, scaled to have unit variance.

Let {X;,t € Z} be a stationary time series and let X1, .. , X, be the one-step-ahead predictions for X, ..., X,
and denote by v, ...,v,_1 the associated MSEPs. Then we define the standardized one-step-ahead prediction



erTors as ,
—1/2 o -
gj=v; 1 (X;—X;), forj=1,....n

If the predictors X1, ..., X, are chosen such that they completely account for the dependence among
Xq,..., X, then ¢, ..., ¢, will be uncorrelated random variables with mean zero and unit variance; that is,
they will behave like a realization from a WN(0, 1) time series. We will treat e1,...,e, as our residuals.

Note that these “residuals” are different from those which we considered in the context of removing a trend
or seasonal effect from a time series. Here we are considering a time series which is stationary, so that trends
and seasonal effects have already been removed, and our residuals are one-step-ahead prediction errors rather
than deviations from a mean.

Now, if {Xt,t € Z} is an ARMA(p, ¢) time series with the parameters ¢ = (¢1,...,¢,)" and 8 = (01,...,0,)T
and white noise variance aQ,Athen the one-step-ahead predictors and the MSEPs are functions of ¢, €, and
02 such that we may write X; = X;(0, ¢) and v;_1 = vj_1(¢,0,0?%), for j =1,...,n, and thus also

& = Ej(¢7 Ba 02> = U;jl/2(¢?0702)<xj - X](d)a 0))7 for .7 = 17 ceey N

Now, suppose that an ARMA(p, §) model is fit to some data X1, ..., X, where p and § may or may not be the
correct AR and MA orders, resulting in the estimated parameter values ¢ = (¢1,...,¢5)7, 0 = (01,...,04)7T,
and 62. Then we define the residuals of the fitted model as

2 =¢;(.0,6%) =v;{*(,0,6%)(X; — X;($,0)), forj=1,....,n.

If the data X;,..., X, are a realization from an ARMA (p, ¢) model such that p = p and ¢ = §, so that a
model with the correct AR and MA orders has been fit, then the residuals &1, ..., &, should behave somewhat
like a realization from a WN(0,1) time series (not exactly, since they are a function of some estimators,
but approximately for a large-enough sample size n). In order to check whether the ARMA(p, §) model is
appropriate for the data, we therefore check whether £4,..., &, behave like white noise.

Ljung-Box test for ARMA model goodness of fit

We can use the Ljung-Box test on the sample autocorrelation function of the residuals &1, ..., &, of a fitted
ARMA (p, §) model to see if the model fits the data. Specifically, we test the hypotheses

Hy: é4,...,6, areiid versus Hip: éq,...,&, are not iid.

Let pg, ...z, () be the sample autocorrelation function of the the residuals €1,...,&,. Then the test statistic
for the Ljung-Box goodness of fit test is

k
Qs = n(n +2) Zﬁél,...,én (4)/(n—j),

which is the same as it was before, and the rejection rule is
Reject Hy at level « if and only if Qpp > Xz—ﬁ—q,a-

Note that the degrees of freedom of the chi-squared distribution is now k — p — ¢§. This accounts for the
estimation of the p 4+ ¢ parameters ¢1,...,¢; and 61,...,60;. We see that we must choose k > p + §.

If we fail to reject Hp, then we may argue that our model fits the data well.

The following R code generates some data from an ARMA(p,q) model, fits a model to the data using
maximum likelihood, and then obtains the residuals; lastly, it performs the Ljung-Box test on the residuals
to see if the fitted model fits the data. We can obtain the residuals quite easily using the arima() function,
but we can also get them using the Durbin-Levinson algorithm based on the autocovariance function from
the fitted model, which the following code also illustrates.



phi <- c(.8,.1)
theta <- c(.4)

p <- length(phi)
q <- length(theta)
sigma <- 1

n <- 100

generate data from an ARMA(p,q) model and center it to have mean O
<- get.ARMA.data(phi,theta,sigma,n)

.bar <- mean(X)

.cent <- X - X.bar

B b4 B4 3

# choose p and q; get mles and residuals using the arima() function
p.hat <- 2

q.hat <- 1

arima.out <- arima(X.cent,order=c(p.hat,0,q.hat),include.mean=FALSE)
arima.resid <- arima.out$resid

# construct residuals via the DL algorithm (they are the same)
phi.hat <- arima.out$coef[1:p.hat]

theta.hat <- arima.out$coef[-c(1l:p.hat)]

sigma.hat <- sqrt(arima.out$sigma2)

gamma.hat <- ARMAacvf(phi.hat,theta.hat,sigma.hat,max.lag=n)
gamma.hat.0 <- gamma.hat[1]

gamma.hat.n <- gamma.hat[-1]

DL.1step.out <- DL.1step(X.cent,gamma.hat.0,gamma.hat.n)
resid <- (X.cent - DL.1step.out$X.pred[-(n+1)])/sqrt(DL.1step.out$v[-(n+1)])

par (mfrow=c(2,2) ,mar=c(4.1, 4.1, 1.1, 2.1))

plot (X)
acf (X,main="")
plot(resid,ylab=paste("Resid of ARMA(",p.hat,",",q.hat,") fit",sep=""))

acf (resid,main="")
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# perform Ljung-Box test on the residuals:
LB.pval <- WNtest.LB(resid,k=p.hat+q.hat+1,nparms=p.hat+q.hat)
LB.pval

## [1] 0.2361771
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