STAT 720 sp 2019 Lec 09

Karl Gregory
3/26/2019

This lecture will make use of the tscourse package, which is installed with the following R code:

library(devtools)
devtools: :install_github("gregorkb/tscourse")
library(tscourse)

ARIMA models

ARIMA stands for “autoregressive-integrated moving average”. The ARIMA model is a model for nonstationary
time series which can be made into a stationary ARMA process by taking first-order differences a finite
number of times.

An ARIMA(p,d, q) process is a process which, after differencing d times, becomes a causal ARMA(p, q)
process. That is, we call {X;,t € Z} an ARIMA(p,d, q) process if the process Y; = (1 — B)?X; is a causal
ARMA((p, q) process.

Recall that an ARMA(p, ¢) process {X;,t € Z} with the representation
o(B)X: =0(B)Z;, teZ,

where {Z,,t € Z} is WN(0, 02), is stationary if and only if the ¢(u) # 0 for all |u| = 1. Now, if {X;,t € Z} is
an ARIMA(p, d, q) process, it has the representation

¢(B)(1 - B)'X, = ¢*(B)X; = 0(B)Z;, t€cL,
where {Z;,t € Z} is WN(0,02) and ¢*(-) is the polynomial given by ¢*(u) = ¢(u)(1 — u)?. Note that the

polynomial ¢*(-) has a root at u = 1 with multiplicity d; an ARIMA(p, d, q) process is therefore nonstationary
for all d > 0.

Example of ARIMA(1,1,0) process

For some |¢| < 1, let {X;,t € Z} be the process satisfying
where {Z;,t € Z} is WN(0,0?). This is an ARIMA(1,1,0) process because the time series Y; = (1 — B)X; is
a causal ARMA(1,0), where causality comes from the fact that |¢| < 1.

Generating data from an ARIMA(p, 1,q) process

Consider how we might generate data from an ARIMA(p, 1, q) process. Let {Y;,t € Z} be a causal ARMA(p, q)
process and let {X;,t € Z} be the time series such that Y; = (1 — B) X, for all t € Z.

Then for each t > 0 we may write

X=X 1+ Y,
=(Xi2o+Yi1)+Y:
=(Xi3+Yi2)+Yi 1)+ Y,

Thus in order to generate a length-n realization X1, ..., X, of the ARIMA(p, 1, q) time series {X;,t € Z},
we may begin by setting Xy = 0, say, and then generating Y7, ...,Y, from the causal ARMA(p, q) process
{Y:,t € Z}, which we already know how to do. Then we construct X, ..., X,, according to X; = X0+Z§:1 Y;
fort=1,...,n.

The following R code performs an example of this.

generate Y from causal ARMA(p,q) process
phi <- ¢(.5,.3)

theta <- c(.8)

sigma <- 2

n <- 200

Y <- get.ARMA.data(phi,theta,sigma,n)

construct X from Y
X <- as.ts(cumsum(Y))

par (mfrow=c(2,2) ,mar=c(4.1, 4.1, 1.1, 2.1))

see non-stationarity in plot
plot (X)

see slowly decaying acf
acf (X,main="")

take 1st-order differences and plot
Xdiff <- diff(X)
plot (Xdiff)

see rapidly decaying acf
acf (Xdiff,main="")

o —]
o —
™ [ee]
- oS |
o -
S - L &
X — &E) S
8 ___ 44 ---=]-|-]- [[[P
—] o
T o
I I I I I I I I I I
0 50 100 150 200 0 5 10 15 20
Time Lag
S ©
pa— o. 7
s 0 5o H
X o — < o H>
] o [T HH'IT.'.'.'T'.""
o

I I I I
0 50 100 150 200 0 5 10 15 20

Time Lag

In order to fit an ARIMA model to real data, we begin by finding the appropriate number of times to
difference the data. In most cases we will find that differencing once, d = 1, is sufficient, sometimes twice,
d = 2. Seldom do we take first order differences more than twice in practice. After determining d, we must
make choices of p and ¢. This is the focus of the next section.

ARMA model selection with AIC and BIC

Akaike’s information criterion (AIC) is a commonly-used model selection tool. It is often used to determine
the appropriate size of a model in terms of how many parameters should be included. In the context of
regression, it can be used to select the number of covariates which should be included in the model; in
the context of fitting ARMA models, it can be used as a way to select p and q. The AIC is based on the
log-likelihood function. Given a log-likelihood function £(6), where 6 is a vector of parameters, the AIC
criterion is defined as

AIC = —2/() + 2dim 0,

where 6 is the maximum likelihood estimator of 6 and dim 6 is the number of estimated parameters in 6. One
chooses the model with the smallest AIC value. Thus the term 2dim 6 acts as a penalty for including more
parameters in the model.

Since the AIC is a likelihood-based criterion, we must make a choice of distribution for our data. It is
conventional to use the Gaussian likelihood to choose p and ¢ according to AIC even if the time series is not
Gaussian. We compute the AIC for an ARMA (p, ¢) model as follows:

Let X5,...,X,, be some observed data and suppose we wish to estimate the parameters of an ARMA(p, §)
model based on X71,...,X,,, where p and § are candidate values of p and ¢. Then the Gaussian likelihood

based on X1, ..., X, is given by
1 N
L(¢7 0) 02; Xla s 7Xn) = (277)_n/2|1}0 o 'Unfl|_1/2 eXp _5 Z(XJ - Xj)2/’Uj,1 ’

and the log-likelihood is given by
n 1 1 A
£(¢7 0, 0'2; Xl, N ,Xn) = ——= 10g(27‘(‘) — 5 Zlog’lﬁ,l — 5 Z(XJ — Xj)Z/’Uj,h

where ¢ = (¢1,...,05)" and @ = (61,...,0,)" and Xy,..., X, are the one-step-ahead predictions
of Xy,...,X, and wvg,...,v,—1 are the associated MSEPs based on the ARMA(p,§) model. Let
& = (b1,...,05)" and 8 = (0y,...,0,)7 and 62 be the maximum likelihood estimators of ¢, 6, and o2.
Then the AIC is given by

AIC = “20(6,0,6% X1, X,) +2(p+ 4+ 1),

where p + ¢ + 1 is the number of parameters estimated, including 2.

In order to select p and ¢, we may fit ARMA models for many combinations of p and ¢, for example for all
(p,q) € {(4,7),0 <4,j <8} and compute the AIC for each one. Then we may select p and ¢ pair for which
the AIC is the smallest. We seldom choose p or ¢ to be much greater than 3, so we do not need to consider a
very large number of candidate models.

After selecting a model via AIC, we should check to see if the residuals behave like white noise using, for
example, the Ljung-Box test.

The following R code illustrates how we can choose p and g based on the AIC. The code also computes the
BIC criterion, which is explained below.

generate some ARMA data

phi <- c(.5,.3)

theta <- c(.1)

sigma <- 2

n <- 100

X <- get.ARMA.data(phi,theta,sigma,n)

true values of p and q
p <- length(phi)
q <- length(theta)

p-hat <- c(0:5)
q.hat <- ¢(0:5)
AIC <- AIC.arima <- matrix(NA,length(p.hat),length(q.hat))
BIC <- BIC.arima <- matrix(NA,length(p.hat),length(qg.hat))
for(j in 1:length(p.hat))

for(k in 1:length(q.hat))

{

get AIC from arima()

arima.out <- arima(X-mean(X),order=c(p.hat[j],0,q.hat[k]),include.mean=FALSE)
AIC.arima[j,k] <- arima.out$aic

BIC.arimal[j,k] <- BIC(arima.out)

compute AIC using ARMA.hstep() function from ts course package
if((p.hat[j] == 0) & (q.hat[k] == 0))

phi.hat <- NULL
theta.hat <- NULL

} else if (p.hat[j] == 0){

phi.hat <- NULL
theta.hat <- arima.out$coef[1:q.hat[k]]

} else if (g.hat[k] == 0){

phi.hat <- arima.out$coef[1:p.hat[j]]
theta.hat <- NULL

} else {
phi.hat <- arima.out$coef[1:p.hat[j]]

theta.hat <-arima.out$coef[-c(l:p.hat[j]1)]
+

sigma.hat <- sqrt(arima.out$sigma2)

ARMA .hstep.out <- ARMA.hstep(X,1,phi.hat,theta.hat,sigma.hat)
AIC[j,k] <- ARMA.hstep.out$aic
BIC[j,k] <- ARMA.hstep.out$bic

3
Warning in arima(X - mean(X), order = c(p.hat[jl, O, q.hat[k]),
include.mean = FALSE): possible convergence problem: optim gave code = 1
Warning in arima(X - mean(X), order = c(p.hat[j], O, q.hat([k]),
include.mean = FALSE): possible convergence problem: optim gave code = 1
Warning in arima(X - mean(X), order = c(p.hat[j], 0, q.hat[k]),
include.mean = FALSE): possible convergence problem: optim gave code = 1

Warning in log(s2): NaNs produced
Warning in log(s2): NaNs produced

Warning in log(s2): NaNs produced

note that the AIC from ARMA.hstep matches the arima—-computed AIC:
AIC

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 446.3320 414.2164 402.0005 401.2599 398.7279 398.9315
[2,] 392.4403 391.2762 393.2744 395.2740 395.9152 397.6818
[3,] 391.5695 393.2744 395.2760 397.0559 394.5386 396.3192
[4,] 393.3850 395.2736 397.1388 395.4939 395.1917 397.4655
[5,] 394.8729 396.6977 395.2065 397.1567 399.9291 398.3055
[6,] 396.4836 394.6533 397.9083 399.1540 400.6036 399.4871

AIC.arima

[,1] [,2] [,3] [,4] (,5] [,6]
[1,] 446.3320 414.2164 402.0005 401.2599 398.7279 398.9315
[2,] 392.4403 391.2762 393.2744 395.2740 395.9152 397.6818
[3,] 391.5695 393.2744 395.2760 397.0559 394.5386 396.3192
[4,] 393.3850 395.2736 397.1388 395.4939 395.1917 397.2181
[5,] 394.8729 396.6977 395.2065 397.1567 399.9291 398.3055
[6,] 396.4836 394.6533 396.9855 399.1540 398.4237 399.4871

tdentify model with lowest AIC

which.AIC <- which(AIC == min(AIC),arr.ind=TRUE)
p.AIC <- p.hat[which.AIC[1]]

q.AIC <- g.hat[which.AIC[2]]

c(p.AIC,q.AIC)

[1] 11

fit model with lowest AIC:
arima.out.AIC <- arima(X-mean(X),order=c(p.AIC,0,q.AIC),include.mean=FALSE)

par (mfrow=c(1,2))
look at restiduals
plot(arima.out.AIC$resid)

look at acf of residuals
acf(arima.out.AIC$resid)

Series arima.out.AIC$resid

< o]
—
Q]
e o
‘®
o © 4
& o
< °7 Loos
5 < °
o
©c o~ _| N
£ | (= T
© . |
< _| ' |||‘| T
|
(Q\|
O‘_ ________________________
| | | | | | ' | | | | |
0 20 40 60 80 100 0 5 10 15 20
Time Lag

test whether restduals are white noise by Ljung-Bozx
WNtest.LB(arima.out.AIC$resid,k = p.AIC + q.AIC + 1,nparms = p.AIC + q.AIC)

[1] 0.7395025

It may happen that the arima() function gives a warning about possible convergence issues. These can
happen when trying to fit ARMA models which are unnecessarily large.

We may also consider the model chosen by the BIC criterion, which is defined in general by
BIC = —2{(0) + log(n) dim 6,
so that for choosing an ARMA model we consider
BIC = —20(¢,0,6% X1,..., Xn) +log(n)(p+ G + 1).

The AIC criterion is known to have a tendency to select larger-than-necessary models, but practitioners are
for some reason very attached to it. The BIC generally chooses models with fewer parameters, as it more
strongly penalizes the inclusion of additional parameters.

note that the AIC from ARMA.hstep matches the arima-computed AIC:
BIC

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 448.9372 419.4267 409.8160 411.6806 411.7537 414.5626
[2,] 397.6506 399.0917 403.6951 408.2999 411.5463 415.9180
[3,] 399.3850 403.6951 408.3019 412.6869 412.7748 417.1605
[4,] 403.8056 408.2994 412.7698 413.7301 416.0330 420.9120
[5,] 407.8987 412.3287 413.4427 417.9981 423.3756 424.3572
[6,] 412.1146 412.8895 418.7496 422.6005 426.6553 428.1440

BIC.arima

[,1] [,2] [,3] (,4] (,5] [,6]
[1,] 448.9372 419.4267 409.8160 411.6806 411.7537 414.5626
[2,] 397.6506 399.0917 403.6951 408.2999 411.5463 415.9180
[3,] 399.3850 403.6951 408.3019 412.6869 412.7748 417.1605
[4,] 403.8056 408.2994 412.7698 413.7301 416.0330 420.6646
[5,] 407.8987 412.3287 413.4427 417.9981 423.3756 424.3572
[6,] 412.1146 412.8895 417.8269 422.6005 424.4754 428.1440

identtfy model with lowest BIC

which.BIC <- which(BIC == min(BIC),arr.ind=TRUE)
p.BIC <- p.hat[which.BIC[1]]

q.BIC <- g.hat[which.BIC[2]]

c(p.BIC,q.BIC)

[11 1 0

fit model with lowest BIC:
arima.out.BIC <- arima(X-mean(X),order=c(p.BIC,0,q.BIC),include.mean=FALSE)

par (mfrow=c(1,2))
look at residuals
plot(arima.out.BIC$resid)

look at acf of residuals
acf (arima.out.BIC$resid)

Series arima.out.BIC$resid

o]
—
(o0]
= AN — O 1
‘N
o © _|
g o - °
m L«
. O -
=l < °
g O N
£ o | """""""""
a
<F | || 11 ||| I| I|| | m
. |
O' s
[[[[[[I [[[[[
0O 20 40 60 80 100 0 5 10 15 20
Time Lag

test whether restduals are white noise by Ljung-Bozx
WNtest.LB(arima.out.BIC$resid, k = p.BIC + q.BIC + 1, nparms = p.BIC + q.BIC)

[1] 0.1993972

Forecasting for ARIMA processes

If {X;,t € Z} is an ARIMA(p,d,q) process then the process given by Y; = (1 — B)¢X, for t € Z is an
ARMA (p, q) process. We construct forecasts of X, 1, h > 1 using forecasts of Yy, 11, ..., Y514 in the following
way.

We may write

because
o= (o= £ (e (o

Therefore we have
(1- dXt Xt"‘Z()]Xt s

from which we may write (1). Note that this representation of X; for ¢ = 1,...,n requires us to define
X4, Xo_g4,...,Xo. Given observed data X;,...,X,«, we solve this problem by re-indexing the data

according to the diagram below, in which n = n* — d:

Y. ... Y,
Xi—qg Xog ... X9 X1 ... X,
Now, we wish to predict X, 5 by projecting it on the the space spanned by the random variables X;_g4, ..., X,,.
Recall that
n+d
P@{Xl,d,...,Xn}Xn—&-h = Z ann+1—j7
j=1

where ay,...,a,+q are chosen to minimize

n+d
E XnJrh_E ananj
Jj=1

Let S,, =sp{Xi_4,..., X} Then because of (1) we have S,, =sp{Xi1-4,...,Xo, Y1,...,Y,}, that is, we can
express any of Xq,..., X, as linear combinations of the random variables X7 _g4,..., Xq, Y1,...,Y, because
of equation (1), giving

sp{X1-d,-. - Xn} =5D{X1-ay..., X0, Y1,..., Y0 }.

Define Sy =sp{Xi1-4,..., X0} and assume

sp{X1-a,..., X0} Lsp{Y1,...,Yn}, (2)

that is, assume that the random variables Y7, ..., Y,, are uncorrelated with the random variables X;_g4, ..., Xg.

Now we consider the projection of Y,y onto S, = 8p{X1_4,..., X0, Y1,...,Yn}. We have

Ps, Ynin = Ps,Yotn +Pss(vi,...vay Ynth-Pspivi,... .Y) Yotn
—_——

=0 by (2)

Therefore, applying the projection Ps, to both sides of (1) with ¢t = n + h gives

d
d)
PSan+h = PSnYn+h + Z <j> (_].)JPSnXt,j
j=1
d /4 _
= Pgtviy vy Yorn + (j) (—1)7Ps, X,_j,
j=1

ARMA prediction

by which the h-step-ahead predictions can be computed recursively for h = 1,2, ...
The MSEPs for the h-step-ahead predictions are quite complicated. See Section 9.5 of B&D Theory.

The following R code demonstrates how to recursively compute h-step ahead forecasts for an ARIMA(p, d, q)
model. It also shows how to get the predictions directly using the arima() function, which also returns the
MSEPs, allowing, in the case of a Gaussian time series, the construction of prediction intervals.

generate data from an ARIMA(p,d,q) model:
phi <- c(.5,.2)

theta <- c(.3)

sigma <- 2

n <- 200

p <- length(phi)
<- length(theta)
<- 1 # the code works for d > 1 as well

Q. Q

this time use arima.sim() function to gemerate the ARIMA(p,d,q) data
note that arima.sim() returns a realization of length n+d when n = n,
so we put n = n-d to get a realization of length n.

<- arima.sim(model=list(order=c(p,d,q), ar= phi, ma = theta),n-d)

LR S Y

difference the series d times and fit ARMA(p,q) model
on differenced series, assuming it has zero mean

Xdiff <- X
for(j in 1:d)
{
Xdiff <- diff(Xdiff)
}

arima.out <- arima(Xdiff,order=c(p,0,q),include.mean=FALSE)

recursively compute h-step-ahead predictions based on predictions

of differenced series; get the ARMA predictions from predict.Arima()
h <- 10

Xdiff .hpred <- predict(arima.out,n.ahead=h)$pred

X.hpred <- numeric()

for(j in 1:h)

{

X.hpred[j] <- Xdiff.hpred[j] - sum(choose(d,1:d)*(-1)"(1:d)*c(X,X.hpred) [n+j-1:d])

plot predicted wvalues
plot(X,xlim=c(0,n+h),ylim=range (X,X.hpred))
points(X.hpred~c((n+1): (n+h)))

check these prediction values against the predicted values obtained the easy way,
from predict.Arima() directly:

arima2.out <- arima(X,order=c(p,d,q))

predict.arima2.out <- predict(arima2.out,n.ahead=h)

X.hpred.arima <- predict.arima?2.out$pred

points(X.hpred.arima~c((n+1): (n+h)),col="red")

put prediction intervals around predictions using arima() std errors
X.hpred.se.arima <- predict.arima2.out$se

lines(X.hpred.arima + 1.96 * X.hpred.se.arima ~c((n+1):(n+h)),col="red")
lines(X.hpred.arima - 1.96 * X.hpred.se.arima ~c((n+1):(n+h)),col="red")

10

100
I

50

I I I I
0 50 100 150

Time

Note that the prediction intervals become very wide very quickly.

Data example

amport nhtemp data
data(nhtemp)

X <- as.numeric(nhtemp)
n <- length(X)

take d=1 differences and plot series; looks stationary
Xdiff <- diff(X)

par (mfrow=c(2,2) ,mar=c(4.1, 4.1, 1.1, 2.1))
plot(as.ts(X))

acf (X,main="")

plot(as.ts(Xdiff))

acf (Xdiff,main="")

11

200

1.0

<
Lo —
. 7 © |
S T
2 - Q 7
i . R e
1 o
B i | L 1
B o
R e — -
0 10 20 30 40 50 60 0 5 10 15
Time Lag
(Y) p— p—
N p—
= Yo}
5 - L ©]
P O I T
2 o I l I
4 T S — [T T 7] —
pa— LQ r-1-" -~ - - =-"+f=-=- = == == == == == =====-=
o _] o
LT T T T T T | [| T T |
0 10 20 30 40 50 60 0 5 10 15
Time Lag

The differenced series appears to be a stationary time series. So we now try to find a suitable ARMA(p, q)
model for the differenced series.

consider all (p,q) pairs such that 0 <= p,j,<= 3
p.hat <- c(0:3)

q.hat <- ¢(0:3)

AIC <- BIC <- matrix(NA,length(p.hat),length(q.hat))

for(j in 1:length(p.hat))
for(k in 1:length(q.hat))
{

get AIC from arima()
try ({
arima.out <- arima(Xdiff,order=c(p.hat[j],0,q.hat[k]),include.mean=FALSE)
AIC[j,k] <- arima.out$aic
BIC[j,k] <- BIC(arima.out)
B
}

identify model with lowest AIC

which.AIC <- which(AIC == min(AIC),arr.ind=TRUE)
p.AIC <- p.hat[which.AIC[1]]

q.AIC <- g.hat[which.AIC[2]]

fit model with lowest AIC:
arima.out.AIC <- arima(X,order=c(p.AIC,1,q.AIC))

12

arima.out.AIC

##

Call:

arima(x = X, order = c(p.AIC, 1, q.AIC))
##

Coefficients:

aril mal ma2

-0.9997 0.2335 -0.7518

s.e. 0.0022 0.1196 0.1180

##

sigma”2 estimated as 1.169: 1log likelihood = -89.56, aic = 187.12
look at residuals

par (mfrow=c(1,2))

plot(arima.out.AIC$resid)

acf (arima.out.AIC$resid)

Series arima.out.AlIC%resid

o |
—
N_
o0
[© |
Py o
52 LL <t
< O F
: O
= z °
2 NI e
¢ 7 S
S L1 1 |
N 'H ||H
|
N
sH
T T T T T 1 I I I I
0 10 30 50 0 5 10 15
Time Lag

test whether restduals are white noise by Ljung-Bozx
WNtest.LB(arima.out.AIC$resid,k = p.AIC + q.AIC + 1,nparms = p.AIC + q.AIC)

[1] 0.09315422

make predictions:

h <- 10

plot(as.ts(X) ,x1im=c(0,n+h))

predict.arima.out.AIC <- predict(arima.out.AIC,n.ahead=h)
X.hpred.arima.AIC <- predict.arima.out.AIC$pred
points(X.hpred.arima.AIC~c((n+1): (n+h)),col="red")

put prediction intervals around predictions

13

X.hpred.se.arima.AIC <- predict.arima.out.AIC$se
lines(X.hpred.arima.AIC + 1.96 * X.hpred.se.arima.AIC ~ c((n+1):(n+h)),col="red")
lines(X.hpred.arima.AIC - 1.96 * X.hpred.se.arima.AIC ~ c((n+1):(n+h)),col="red")

: i

as.ts(X)

48 49 50 51 52 53 54

0 20 40 60

Time

The predictions are very erratic because of the values of the fitted parameters. The next chunk of R code
shows the model selected by the BIC criterion.

identtfy model with lowest BIC

which.BIC <- which(BIC == min(BIC),arr.ind=TRUE)
p.BIC <- p.hat[which.BIC[1]]

q.BIC <- g.hat[which.BIC[2]]

fit model with lowest BIC:
arima.out.BIC <- arima(X,order=c(p.BIC,1,q.BIC))
arima.out.BIC

##

Call:

arima(x = X, order = c(p.BIC, 1, q.BIC))
#t

Coefficients:

mal

#t -0.7983

s.e. 0.0956

#t

sigma”2 estimated as 1.291: 1log likelihood = -91.76, aic = 187.52
look at residuals

par (mfrow=c(1,2))

plot(arima.out.BIC$resid)

acf (arima.out.BIC$resid)

14

Series arima.out.BIC$resid

e _|
—
N — © _|
o
S
o © |
& - S
O
o LL g._
5 o o <
o N [t
@ o
s T |1 |
© T —
T T T
N N
! o Al
[[[[[[[[[[[
0 10 30 50 0 5 10 15
Time Lag

test whether restduals are white noise by Ljung-Bozx
WNtest.LB(arima.out.BIC$resid,k = p.BIC + q.BIC + 1,nparms = p.BIC + q.BIC)

[1] 0.5050558

make predictions:

h <- 10

plot(as.ts(X) ,x1im=c(0,n+h))

predict.arima.out.BIC <- predict(arima.out.BIC,n.ahead=h)
X.hpred.arima.BIC <- predict.arima.out.BIC$pred
points(X.hpred.arima.BIC~c((n+1): (n+h)),col="red")

put prediction intervals around predictions

X.hpred.se.arima.BIC <- predict.arima.out.BIC$se

lines(X.hpred.arima.BIC + 1.96 * X.hpred.se.arima.BIC ~ c((n+1):(n+h)),col="red")
lines(X.hpred.arima.BIC - 1.96 * X.hpred.se.arima.BIC ~ c((n+1):(n+h)),col="red")

15

as.ts(X)

48 49 50 51 52 53 54

Dickey-Fuller unit root test

We may be interested in performing a statistical test to see whether a time series is non-stationary in the
sense of having an ARMA representation such that the polynomial in the AR coefficients has a unit root.
The Dickey-Fuller test tests this.

For AR(1) model

Consider for the moment an AR(1) model. Let X1,...,X,, be a realization from the time series {X;,t € Z}
satisfying
Xp = p=o(Xy — p) + Zt,

where {Z;,t € Z} is WN(0,0?) and |¢| < 1.

We wish to test the hypotheses
Hy: ¢ =1 versus Hy: ¢ < 1.

So if we reject Hy, we can conclude that the time series is stationary.

If Hy is true, it turns out that the maximum likelihood estimator QAS of ¢ =1 does not have a Normal limit
distribution as n — co; however, under Hy, under which ¢ # 1, we have

Vn(p — ¢) — Normal(0,1 — ¢?) in distribution

as n — o0o. But for hypothesis testing, it is the null distribution which is needed in order to calibrate the
rejection region of the test according to the size of test desired. We therefore consider a different model.

Consider the time series given by VX; = Xy — Xy for t € Z. We have

16

VX=X, — Xy
= (Xp —p) = (Xem1 —)
=¢(Xim1—p) = (Xemr —p) + 24
=p(l=9)+(¢p—1) X411+ 2
—_— ——
[o2 (o
= ¢y + P1 X1 + Zy,
where
do=pn(l—¢) and ¢]=(¢—1).
Now, in order to test Hy: ¢ = 1, we test Hy: ¢] = 0. We can estimate ¢ in such a way that our estimator

has a known distribution under the null hypothesis, which will allow us to calibrate a rejection region for the
test according to any desired size.

We estimate ¢ and ¢] with the least squares estimators

(5.67) = argmin Y~ [VX; — (65 + ¢1Xe-1))"

¢5.01€R 5

We estimate the standard error of ¢% with

1/2
1 - s s 2
. n—1—2tz_; [VXt - (¢0+¢1Xt‘1)]
SE(¢7) = — 5
n 1 n—1
> X - — X
t=2 =1

Note that this is the same way in which we would estimate the standard error of the slope coefficient in
simple linear regression, but we have n — 1 instead of n data points because of the differencing.

The test statistic of the Dickey-Fuller test is defined as

DF = ¢} /SE(¢?). (3)

We will reject Hy: ¢ =1 in favor of Hy: ¢ < 1 if the statistic is a large-enough negative value; if q@’{ is close
to zero, than there is not strong evidence against Hy. At first glance, it seems that the null distribution of
the Dickey-Fuller test statistic should be a t-distribution, but it is not exactly a ¢-distribution because of the
relationship between the the response VX; and the predictor X;_; for t = 2,...,n. The asymptotic (large n)
critical values at the 0.01 and 0.05 levels are —3.43 and —2.86, respectively. See pg.~373 of Fuller (2009).

For AR(p) model
We can also test whether an AR(p) model has a unit root. Let {X;,t € Z} be the AR(p) process given by
P
(Xe =)= 6j(Xsej —p) + Zit €L,
j=1

where {Z;,t € Z} is WN(0,02). Consider checking whether the polynomial ¢(u) =1 — ¢1u — - -+ — ¢puP has
a unit root. If ¢(u) = 0 for w = 1, this means that 1 — ¢ —--- — ¢, = 0, or that the AR coefficients sum to
one. This is what we will test:

Ho: o1+ -+ ¢p=1versus Hi: o1+ -+ ¢p #1

17

We again consider the time series VX; = X; — X;_1, t € Z. We can write

VX, =Xy — X1
= (Xe —p) = (X1 — 1)
=1 X1 —p) + P2 (Xima —p) + -+ 9p(Xy—p — 1) = (Xym1 —p) + Z4
=p(l =1 = —¢p) + (b1 — D)Xt 102Xy 2+ + X + 74
=p(l=¢r = =)+ (d1+-+dp —)Xo 1+ (=2 — - — o) (Xeo1 — Xy 2) + Z4
o (-1 — Op) (Xi—pro — Xipy1) + (=0p) (Xp—pi1 — Xo—p) + Z4
=¢o+ 1 Xe1+ VX 1+ + VX pr1 + 2y,

where

$o = p(l—¢1 = —p)
¢ =(p1+ - +¢—1)
¢ = (=2 =+ — &)

(15;71 = (_prfl - ¢p)
¢; = *pr'

In order to test Hy: ¢1 + -+ ¢p = 1, we test Hy: ¢7 = 0. We estimate ¢] as before, but this time as a
coefficient in a multiple linear regression model. That is we obtain

n

* * * : * * * * 2
(¢0,¢7-.-,¢p) = argmin Z [VX: — (95 + ¢1 X1 + 95V X1+ 95V Xy 1))
¢O>¢1)~~7¢p t:erl

We obtain an estimate S/E(ggf) of the standard error of &f as we would in multiple linear regression. The

Dickey-Fuller test statistic is given again by DF = qAST / @(é“{) We may compare this to the same critical
values used for the AR(1) case.

The R code below defines a function for carrying out the Dickey-Fuller unit root test and runs the test on a
simulated data set.

unitroottest.DF <- function(X,p=1)
{

if (p==1)
{

Xdiff <- diff(X)

Xlag <- X[1:(n-1)]

lm.out <- 1lm(Xdiff ~ Xlag)

DF <- summary(lm.out)$coef[2,3]
} else if(p > 1){
Xdiff <- diff(X)

XX <- matrix(NA,n-p,p)

18

XX[,1] <- X[p: (n-1)]

for(j in 1:(p-1))
{

XX[,1+j] <= Xdiff[(p-j):(n-1-j)]
}

lm.out <- lm(Xdiff[p:(n-1)] ~ XX)
DF <- summary(lm.out)$coef[2,3]

reject.01 <- FALSE
reject.05 <- FALSE
if (DF < -3.43)

{

reject.01 <- TRUE
3
if (DF < -2.86)
{

reject.05 <- TRUE
}

output <- list(reject.05 = reject.05,
reject.01 = reject.01,
DF = DF)

return(output)

phi <- 0
theta <- NULL
sigma <- 2

n <- 200

X <- get.ARMA.data(phi,theta,sigma,n)

Warning in min(Mod(polyroot(c(l, -phi)))): no non-missing arguments to min;
returning Inf

Warning in min(Mod(polyroot(c(l, -phi)))): no non-missing arguments to min;
returning Inf

unitroottest.DF(X,p=5)

$reject.05
[1] TRUE
##

$reject.01
[1] TRUE

19

#i#
$DF
[1] -6.461597

SARIMA models

Seasonal ARIMA (SARIMA) models can accommodate unit-root-type non-stationarity as well as seasonality.
Given a realization X1, ..., X, from a time series {X;,t € Z}, a SARIMA model is appropriate if for some
d>1,D >1and s > 1 the time series given by Y; = (1 — B)¥(1 — B*)P X, t € Z, appears to be a stationary
time series. The operation (1 — B)?(1 — B*)P takes differences at lag s a number of times given by D, which
is intended to remove seasonal effects with period s, and then takes first-order differences a number of times
equal to d, which is intended to remove a trend or unit-root-type non-stationarity.

The following R code applies to the AirPassenger data set from R the differencing (1 — B)(1 — B'?),
corresponding to d =1, D = 1, and s = 12, which results in a time series that appears to be stationary.

data(AirPassengers)
plot (AirPassengers)

AirPassengers
100 200 300 400 500 600

I I I I I I
1950 1952 1954 1956 1958 1960

Time
plot(diff (AirPassengers))

20

—~

)

S

)

o)

[

» o

)

o]

[aX

=

< 5

= O 4

S
o
o _|
\TI

I I I I I I
1950 1952 1954 1956 1958 1960

Time
plot(diff (diff (AirPassengers),12))
S g -
?
t < -
(5]
)
)
@©
» |
'j(:
s 8-
%
o
<t -
I I I I I I I
1950 1952 1954 1956 1958 1960
Time

Looks like d = 1 and D = 1. Period of seasonality is s = 12.

Definition of a SARIMA process

A time series {X;,t € Z} is called an SARIMA(p,d,q) x (P,D,Q)s process if the time series given by
Y; = (1 - B)41 - B*)PX, for t € Z is a causal ARMA process satisfying

O(B")$(B)Y; = O(B*)0(B)Z:, te,

21

where {Z;,t € Z} is WN(0, 0?) and where

@(u):l—@lu—...—q)pup and ¢(u) =1—pyu— - — ppu?
Ou)=1-0u—--—0gu? and O(u)=1—0u—--—0,ul

Note that for {Y;,t € Z} to be causal, we require ®(u) # 0 and ¢(u) # 0 for all |u] < 1.

To understand the definition of the SARIMA model, consider arranging a realization Y7, ...,Y;, of the time
series Y; = (1 — B)4(1 — B*)P X, in a table as follows:

1 2 . s
1 Y Y, Y.
2 Yo Yoo oo Yo
ko Yg-1)s1 Yist2 oo Yis
N Yv(Nfl)squ }/(Nfl)erl D

Now we consider the dependence within the columns of the above table to be that of an ARMA(P, Q) process;
that is, we assume

Yi =0V s +...0pYi_sp+O1U_s +--- +O0QUi_sq + Uy, tecZ

for some time series {Uy,t € Z}. We may write the above as
®(B*)Y, = O(B)U,, tel.
If we in turn assume that the time series {U;,t € Z} is an ARMA(p, ¢) process satisfying
$(B)U; = 0(B)Z,, tel,
where {Z;,t € Z} is WN(0, 02), we have
B(B*)Ys = O(B)U, = B(B*)p(B)Y: = O(B*)p(B)U.
Lastly, since ¢(B)U; = 0(B)Z;, we have
O(B*)p(B)Y, = O(B*)(B)Z,, teL.

Note that the polynomials given by ¢*(u) = ®(u®)¢(u) and 6*(u) = O(B*)0(B) are of order p + sP and
q + s@Q, respectively.

Estimation and forecasting with SARIMA models

We can estimate the parameters of the SARIMA (p, d, q) x (P, D, Q)s model from some data Xi,..., X, by
obtaining the values Y; = (1 — B)¥(1 — B*)P X, and then computing the maximum likelihood estimators of
the ARMA model

¢*(B)Y; = 0"(B)Z,, te€L,
where {Z;,t € Z} is WN(0,0?) and ¢*(-) and 6*(-) are the polynomials given by ¢*(u) = ®(u®)¢(u) and
0*(u) = O(B*)#(B). These can be computed easily using thearima () function in R.

The following shows how to fit a SARIMA(p,d, q) x (P, D,Q)s on the AirPassenger data.

22

Example of how to fit a SARIMA model:

s <- 12
p<-1
d <-1
q<-1
P<-1
D <-1
Q <-1

arima.out <- arima(AirPassengers,

order=c(p,d,q),

seasonal=list (order=c(P,D,Q) ,period=s))
arima.out

##

Call:

arima(x = AirPassengers, order = c(p, d, q), seasonal = list(order = c(P, D,
Q), period = s))

##

Coefficients:

arl mal sarl smal

-0.1386 -0.2028 -0.9228 0.8329

s.e. 0.5865 0.6128 0.2387 0.3519

##

sigma”2 estimated as 130.8: 1log likelihood = -506.15, aic = 1022.3

Just as we chose the orders p and ¢ for ARIMA (p, d, ¢) model using the AIC and BIC criteria, we can also
choose the orders p, ¢, P, and @ of the SARIMA(p, d, q) x (P, D,Q)s model using the AIC and BIC. We will
suppose that d, D, and s can be found by taking differences as looking at plots of the differenced series. The
period s will in many cases be evident from context of the data.

The R code below illustrates using the AIC and BIC to choose p, ¢, P, and @ of the SARIMA(p, d, q) X
(P,D,Q)s model on the AirPassengers data set from R. In addition, it shows how to use the
predict.Arima() function to get h-step-ahead predictions from the fitted SARIMA model for h > 1.

Now choose orders p, q, P, and § by AIC or BIC. The number of times to difference,
d and D, can be ascertained by taking differences and looking at plots of the
differenced series, as above.

p.hat <- 0:2
q.hat <- 0:2
P.hat <- 0:2
Q.hat <- 0:2

AIC <- BIC <- array(NA,dim=c(length(p.hat),length(q.hat),length(P.hat),length(Q.hat)))
for(j in 1:length(p.hat))
for(k in 1:length(q.hat))
for(1 in 1:length(P.hat))
for(m in 1:length(Q.hat))
{
use the try() function because there might be convergence issues for some
models with a larger number of parameters
try ({

23

arima.out.jklm <- arima(AirPassengers,
order=c(p.hat[jl,d,q.hat[k]),
seasonal=list (order=c(P.hat[1],D,Q.hat[m]),period=s))
AIC[j,k,1,m] <- AIC(arima.out.jklm)
BIC[j,k,1,m] <- BIC(arima.out.jklm)
B
}

Warning in log(s2): NaNs produced
Warning in log(s2): NaNs produced
Warning in log(s2): NaNs produced

Warning in log(s2): NaNs produced

Warning in arima(AirPassengers, order = c(p.hat[j], d, q.hat[k]), seasonal
= list(order = c(P.hat[l], : possible convergence problem: optim gave code
= 1

Warning in log(s2): NaNs produced

Warning in log(s2): NaNs produced

Warning in arima(AirPassengers, order = c(p.hat[j], d, q.hat[k]), seasonal
= list(order = c(P.hat[l], : possible convergence problem: optim gave code
=1

Warning in log(s2): NaNs produced

look at AIC-selected model

ind.AIC <- which(AIC == min(AIC,na.rm=TRUE), arr.ind=TRUE)
p.AIC <- p.hat[ind.AIC[1]]

q.AIC <- q.hat[ind.AIC[2]]

P.AIC <- P.hat[ind.AIC[3]]

Q.AIC <- Q.hat[ind.AIC[4]]

arima.AIC <- arima(AirPassengers,
order=c(p.AIC,d,q.AIC),
seasonal=list (order=c(P.AIC,D,Q.AIC),period=s))

arima.AIC

##

Call:

arima(x = AirPassengers, order = c(p.AIC, d, q.AIC), seasonal = list(order = c(P.AIC,
#i#t D, Q.AIC), period = s))

##

Coefficients:

arl mal ma2 sarl smal sma?2
-0.9187 0.5407 -0.4587 0.9824 -1.3112 0.4014
s.e. 0.0459 0.0886 0.0876 0.0594 0.1950 0.1192
##

sigma”2 estimated as 107: 1log likelihood = -499.16, aic = 1012.32

look at residuals of fitted model; check to see ©f they are white noise
acf (arima.AIC$resid)

24

Series arima.AlC$resid

ACF
0.2 04 06 08 1.0

-0.2
I

Lag

nparms.AIC <- sum(p.AIC,q.AIC,P.AIC,Q.AIC,1)
use a butlt-in function for the Ljung-Boxz test
Box.test(arima.AIC$resid,type="Ljung-Box", fitdf = nparms.AIC, lag = nparms.AIC + 1)

##

Box-Ljung test

##

data: arima.AIC$resid

X-squared = 6.4264, df = 1, p-value = 0.01124

look at BIC-selected model

ind.BIC <- which(BIC == min(BIC,na.rm=TRUE), arr.ind=TRUE)
p.BIC <- p.hat[ind.BIC[1]]

q.BIC <- g.hat[ind.BIC[2]]

P.BIC <- P.hat[ind.BIC[3]]

Q.BIC <- Q.hat[ind.BIC[4]]

arima.BIC <- arima(AirPassengers,

order=c(p.BIC,d,q.BIC),

seasonal=list (order=c(P.BIC,D,Q.BIC),period=s))
arima.BIC

##

Call:

arima(x = AirPassengers, order = c(p.BIC, d, q.BIC), seasonal = list(order = c(P.BIC,
D, Q.BIC), period = s))

##

Coefficients:

aril

-0.3076

25

s.e. 0.0828
##
sigma”2 estimated as 137: log likelihood = -508.2, aic = 1020.39

look at residuals of fitted model; check to see if they are white noise
acf (arima.BIC$resid)

Series arima.BIC$resid

ACF

-0.2 00 0.2 04 06 08 10

Lag

nparms.BIC <- sum(p.BIC,q.BIC,P.BIC,Q.BIC,1)
Box.test (arima.BIC$resid,type="Ljung-Box", fitdf = nparms.BIC, lag = nparms.BIC + 1)

##

Box-Ljung test

##

data: arima.BIC$resid

X-squared = 2.1689, df = 1, p-value = 0.1408

fun part: get predictions from BIC-selected SARIMA model

n <- length(AirPassengers)

h <- 24

predict.arima.BIC <- predict(arima.BIC,n.ahead=h)

pred <- predict.arima.BIC$pred

upper <- predict.arima.BIC$pred + 1.96 * predict.arima.BIC$se
lower <- predict.arima.BIC$pred - 1.96 * predict.arima.BIC$se

plot(as.numeric(AirPassengers),
xlim=c (1, (n+h)),
type="1",
ylim=range (AirPassengers,upper,lower),
ylab="Air Passengers",
xlab="Month")

26

lines(predict.arima.BIC$pred~c((n+1): (n+h)),col="red")
upper <- predict.arima.BIC$pred + 1.96 * predict.arima.BIC$se
lower <- predict.arima.BIC$pred - 1.96 * predict.arima.BIC$se

lines(lower~c((n+1): (n+h)),col="red",1ty=3)
lines(upper~c((n+1): (n+h)),col="red",1ty=3)

o
O p—
N~
" _
[¢b)
(@) o
[o
(b Lo
(7))
)
CG —
o
< 38 4
(9p]
o
o —
— | | | T
0 50 100 150
Month
References

Fuller, Wayne A. 2009. Introduction to Statistical Time Series. Vol. 428. John Wiley & Sons.

27

	ARIMA models
	Example of ARIMA(1,1,0) process
	Generating data from an ARIMA(p,1,q) process

	ARMA model selection with AIC and BIC
	Forecasting for ARIMA processes
	Data example
	Dickey-Fuller unit root test
	For AR(1) model
	For AR(p) model

	SARIMA models
	Definition of a SARIMA process
	Estimation and forecasting with SARIMA models

	References

