



































































































































MULTIVARIATE TIME SERIES1

We now consider t.es TERI where It C IR TEE
so at each time point we observe m random variables

We will assume throughout that EXI.co for all j hi.sn TEI

Define the mx mean vectors and the man covariance matrices

It

Mtthet ELIttn fttnlxt f.TT HER

for TEE We can define stationarity in terms of these

DIE Ibtationarity for multivariate time series ht

An m dimensional m.t.s.SXz.to is stationary if

C EX D for all j lg.e.in 662

ii It does not depend out

iii For all HER Gv Itu does not depend on t

If the above hold set µ It and

Kh GulItth 1 Ittukt AßT for HER

The function Kh is called the covariance matrix function cum

Defining for i j l m the functions bijl by

G h GRCXtth.i.lt

we may write Kh ti h ki.jc.vn






































































































































The functions tut tmmL are the aufs of the component
series of LIEFER
For each Eli the function digC is called the cross

examinationof the Series Xii TEL and Xy TER

It is important to note that bijl is different from til
We interpret tijlh lovlxtth.nlt.j Gr Xt.i Xth as the covariance
between the current value of component i and the value of component j
at h steps in the past
Likewise tjilhl GVLXtth.j.lt is the covariance between the current value
of component i and the value of component j at h steps in the future

We define the correlation matrix function Gmf as

RU Puk
im

HE

where PiCh HER for i j L m

Kilo

Properties of event of a stationary m.t.es

If Pl ti D Em is the Wmf of a stationary
m.t.s.SI tc 23 then

i Kh Äh for all HER

16,141 die.to 6,6 i g in for all HER
iii fiel is an auf for m

Liv For n 1,2
n n

auf Mi k a n o for all an a nett

Pr For Ci write

Kh Itthit fit






































































































































EIH httxt h M.AT

It Itu fit
In en

5th

For ii we have

His.CH IGrlXttn.i.Xt IEfV lXttn.i VwlXt Ik f6ildtjoB
Cauchy Schwarz

For for each i li.in die.CH Cor Xtth i Xt.i so it is the
auf of Ski TEE

For Liv for each n 1,2 for any na In EIR we have

2

E E avg.TL
ja

EI.in aTlXi f lXn r5an
E Mi Hin

The cmf RL has properties Li Liv above as well as the property

Riilo Piilo 2 for all E I m

Examph Consider the 2 dimensional t.si taz with
component series given by

Xy Zz t Ozzy and Xyz Utt Zte 13J






































































































































where 2 TEE WNCO.EE and tc ZI WNLO.su
are white noise sequences which are uncorrelated with
each other

Then we have

htlhdzlhbz.CH zzlhI

2 0 0 0 0

0oz es Jz o o

2 0 0

when we find the cross variances as

6,26 Gv Xy Xtz Gv Zet 027 4 927 09oz
6,2L Gr Xttyi.kz Gv Zu 027 Ut 927 0

tut Gr Xx Gr Zt.it 02 2 VETS 2 9oz
6,2 h 0 for 1h172

62,6 Gr Xtz 4 09Fz
tz 1 Gv XLH.ee Xx Gr Uth 927 Zz 04 Satz
tz f Gv Xt 1,2 Xt Gr Ut its Zu Ztt OZ o

tz h o for 1h17 2

Note that since PCH Eth we have t.dk 6z l h

Then we have

not at at






































































































































We now define multivariate white noise

Defug Multivariate whitenoise

An m variate t.si ETHER is called white noise with
mean Zero and covariance matrix if it is
stationary with mean vector and mf

Kh Es if h o

o if k 0

We write II tc ZI WNCo.sn

If TEL are independent identically distributed random vectors
with mein 9 and covariance matrix we write
I tEZI IIDCO.sn

Multivariate white noise is a building block for many
multivariate time series models

MULTIVARIATE LINEAR PROCESS1

Just as in the univariate setting we define in the multivariate
setting a class of time series called linear processes
This is a ns.t.s which admits the representation

It Cj Ztg TEL
j 8

where 94 JEZ am matrices such that the components
are absolutely summable and Zt C23 WNCO.sn

Absolute summability of the components oflcj.ie is the property that
ICj.net for kill m when Cake is the Bl component of Cj

A linear process is an MAC proves if o for g 0

so that
I 0421 for TEE






































































































































Exercise Show that the linear process is stationary and
find its

cvmf.hdutrW.hn
8

Xp Cj Ztg GEIZT
j j

by DLT since Cj abs summable

In addition

Mh Cor Itar It

Gul Etui EIGET k

g
4 EZtth jZI.CI

i Kth
T

Cnn µ
our

k

LTHESAMPLEME
NDSAMPLECovtRIANCEFUNCTIONG.ve

a stationary m.t.es TER we consider properties
of the estimator

In L It
for the mean f It
The next result gives conditions under which In is a consistent
estimator of µ






































































































































Result Proposition II2.1 of BRDTheory

If Intel is a stationary m.t.es with mein µ and c.m.f.PL then

E EHENAlli o as nun

if dich o for each ist m as h

Cii n III n AII s.EEiilhlifn1fiilhlIcxforeachi l

m.Prof We can see the above by noting

FHIN HI EEEK.it Vorhin

and invoking previous results from the univariate setting

The next result provides a condition under which the sample mean

In is asymptotally Normal

Result Pop111.2 of BRDTheory

If SXt.tt is an m dimensional m.t.si admitting the representation

to

Xt µ t Cj TEE
j 8

where Zytez IIDA E and Cj IER satisfy
j
1Cj.euLforeahlk l m Then

nun Auf E
in distribution as n 8






































































































































The sample covariance matrix function is given by

zu
III Itar E It XII ho nu

nif fx m xn lx xn Ih cn D i

Ihlen ntl

Recall that the sample autocovariana function for a univariate
time series Xt C ER is defined as

In Xtth F Xy F h LnD so i

Inch
1hL ninth

The reason Äh is more complicated than Inch is that
T T

GvlIttn.XD FtXttnXtT_MfT _fEItXttnAfI lXt.I
whereas for the univariate t.s.hr tth Xz Gr Xz Xtth

Denote by h ij b.n.tn the entries of h for HER
Then the sample c.m.f.is defined by

Ich D
e ein

where

ÄHICH
y

ij li.in hez

Note that Öl Ömml and ÄH nimmt are the sample
aufs and acts of the component time series






































































































































Plottingtheamphamte

The sample cnn.fi based on a length 10,000 realization of
this series from pg 3 is plotted below in R under the settings

0 0.9 9 0.5 Tz 2 0.5

09oz
Itar'zlötto

f h h O1,2 6,2lb h 0,42
correlationbetweencurrent
value of Series 2 and

Hd TI value of Series 2 at h
steps in future

same as tz h hro.bz

6,2 h h O 1 2 h hat
Correlation between currentvalue
of Series2 and value of
Series I at h steps in og

es
09oz

Ita ölöttoZ Itörzlötto

The R code acfCX.tnpe covariance where X is an nem matrix containing
in each column a time series computer the sample mf EC
and stores in an array of the form

d o 62,6 tm.CO

i i
µt.LK talk

Am o demG 6mm o

n n jun where K is the maximum lagMm k am k






































































































































IMULTIVARIATEARMAMODELSDe.fm
A m.t.s.IXt.tt is an m variate ARMA ng process
if it is a stationary solution to

It IIE Ip It p 0,4 t t 97oz TER

where It TERI WN 0 E and I Ep and0 0g are man matrices

Defining the man matrixvalued polynomials

P
OIC In Eint Ip

n Im t Gut t0gal
man identitymatrix

we may write the multivariate ARMA equations as

ICB B It TEE

Them am natural extensions of causality and invertibility
to the case of multivariate ARMA models been 11.3 of
D D Theory for details

IMULTIVARIATESPECTRALDENSITYT
orm.t.es the spectral density is a matrix valued

function.DEspectral density matrix function If the event Pl satisfies
8
16 b D for all i L sn

k p

then the spectral density matrix function is defined as

4 egotzah Kh EHM






































































































































Similarly to in the univariate setting we have

IT
PH 1G egskah da HER

1T

For the rest of this section consider a stationary bivariate
t.s.SIz tE2 with aufs and cross covariance bijl i j _1,2
satisfying

16 h 8 i.j I.sn
h p

Then the function

f a E expfzhjt.lk Eser

is called the cross trmorcr petrad.ly of the
time series Xt taz and Xtz.EE23
We have

f G E expfzhdk.ch

explehdtz.tk

E expkhald.ch

FL12
We see that the offdiagonals of the spectral density matrix
are the cross spectra

A EI.ph
KD






































































































































Example Consider again the m.t.s.lt t tE2 defined by

Xt 027
Xyz Ut 927 1 TEL

where Zytek WNCO.EE and tc ZI WNLO.su
are white noise sequences which are uncorrelated with
each other

Based on Mh HER that we found before we have
MAG

f a EE II toi 7 It 20cal to

D

tuk expl zdft.dk Stürze
f G E eepfzadt.ch

OSEztexpfzlDD.SI

09oz t Satz costa t zein

In SEE Ot cos t zSEEsink21T

a SEE Ot cos c SEEsinkt

So we have

It 20costa to Slot cos zessin a
f II gcotc.sa.D zss.nl Elite

ID






































































































































There are several functions related to the cross spectrum between
two time series which am of interest in particular to the
Signal processing community Consider the following

bguavedwherencyfuncti

e.la
a

Hza
f G

This satisfies 04 Kh a 2 and is like the correlation between
the time Series at the frequency 7

6 spectnm az.la Reffel

Quadraturespeutnm i.ge Im f G

Amplitt a G II G cicattg.EC

Phaseepectrum f G where 01,2L satisfies

f C dmeepfzcf.la

so d tail 4
Recall that any complex number xn atbic.cn be expressed

explatail
according to this picture

Im

aß a t.it
a Re






































































































































CHECKING FOR INDEPENDENCE OF TWO TIME SERIES

We now consider how to check whether two time series am independent
of each other Our first instinct is to look at the values
of the sample cross correlation function fiel This is right
but we find that the variance of fach h 0,1 depends
on the marginal correlation structures of the two time Series
so the story is more complicated than checking whether f C
is large for home lags

The following theorem gives insight

Result fromThun222.2 of BSD Theory

Consider two linear processes

Xyz djzt j.SZ LEZI IIDCo.se

Xtz ß Ut tEZS IIDCO.FI

when 4 TERI and UttEZ are independent III 8 auch
BILD Then for each h no.bz

a g

5h ÄH N 0,7 14 224 in distribution

Note that the time series Hate and Xtz TERI defined
in the result are independent This result suggests plotting
the values of ß h for h O 1,2 K for home 1h31 and
checking whether any fall outside of the bounds given by

raffAli Kali n

This asymptotiz variance is however noteasily estimated One way to
proceed which obviates estimation of the limiting variance above
is to pre whiten one or both of the series 114J






































































































































Note that if one or the other or both of the time series
Xtc TERI and I TEE islam white noise then

AC pal 2
g D

ho to test whether a time series is correlated with a
white noise sequence or to test whether two white noise
sequences are correlated we may ch.ch whether ß Chfor h 0,1 K for some 1 71 falls outside of the bounds

I 9615N

Prewhitening can be done for example by obtaining the residuals
of ARMA fits on both time series Then PIE can
be computed on the sets of residuals and then it can
be compared to the bounds 1.96K If ß C
fills far outside of their bounds for any lags one
will suspect that the original time series an independent

We now go through a proof of the result

Proof of Result

For any fixed value of h 91,2 we have

i a III lxttn xDLXt.tk

t Xtth.itt z XtthIXz XTXt ztXT5

In XLth.tlt z tnzIn
h
XtthiXt.z

Open k

III Hank t III Kz CHIEF
opfik optik g n

t Xtth.itt ztopln k

when optik denotes a term which converges to zero even when
multiplied by n
































































































Thus we have

ch h t optik
where

ICH II Xtth.itt.z
The main part of the proof is establishing

f F f h N o 1 in dist

es nie from which the claim follows by simpler arguments

To establish we begin by defining for each m L the
random variable

6 a L III XII
where

XII Lizzi and XII qq.MU for TER

Thus In h is the mean of a length n realization of
the Gmt dependent time series given by

iii viii xiii tea

The time Series YI te 23 has auf given by

Ein EYIINYI
Cm C Cm lm

EI XL thtk.tl Itk zXtth IXt 2

EifImdiZtthtk i afUttkjef.me th fgnf8Ut 8 1



didgEZtthtk.it h lEEPjPgEUttk jUtglilEmIelEmkleinstem

m 1kt m 1kt
Lehnt der ßgtlhlPg 52f m G m

By results proven in Lecture 3 CLT for m dependent processes
we have

At Ch o fünf in distribution

as n

Now
m 1kt m IM

Iim G k limp fun dem der ßgtthlß In
miso HEM m 7 f m G m

detlkldeoigIGBgtlklpgo.IO
t.lk talk

k p

using the fact that

N
6 b detthl de F und tz k pgtlklf.grl g g p

Thus by the Useful Proposition of Lee3 Proposition 63.9 of BSD Theory
d holds if we can establish

mliy.li InE tIlD tYch o

We out the details of shoving this
MICH plays the roleof Xu

To invoke die h plays the role of Wn

in
i i iii iis i


