



































































































































BOOTSTRAPPINGWedisosse.am
bootstrapping methods for time series data but we

first introduce the bootstrap for the iideelt.mg
IIDBOOTSTRAP

ktk.e.gl nbeindep.r.v.swithcdtF
Let Tn tu X Xn F be a function of X X as well
as of the edf F so that it may involve some parameters
which are functionals of F

Suppose it is of interest to estimate either some quantities based on
moments of the sampling distribution of Tn say

F Tu or Vai
or the colt of the sampling distribution Gala P Tm Ex

Expel Consider Tu tnlks.n.in F 5nA g Isn where

In t.EE si E Xi EY and µ xd

In order to build a confidence interval for µ we
would like to estimate the cdf Gn given by

G G Pfalk e Is Ex

Let Ging inffx GG 1 93 be the upper S guantile of TnThen we have

P G FÜ G naSir
which can be rearranged as

PIK G Ei µ In Guru a

which shows us that a C a 400 c I for µ may
be constructed as

In a E In Gia
But to construct this interval we must know G f






































































































































The idea of the bootstrap is to estimate the cdt F
with home estimator E based on X Xu and then define

tnlxi.XI.FI
where XY are independent r.us with distribution En
conditionally on X Xu

ht Fit IHK X and vazTT V.fi X Xn
so that Fly and Way are expectation and variance conditional
on X Xu Then F IT and Vaunt am the bootstrap estimators
of ER and Wart respectively

Let En be the edf given by
GELD BITTE a P Ex IX X

where Rt denotes probability conditional on X Xu Then
GI is the bootstrap estimator of Gn

Obtaining a Monte Carlo approximation of GIF

In many bootstrap applications we cannot get Exit VAHIT or 6
analytically We therefore approximate them using a MonteCarlo
procedure like the following

Given X Xn compute Choose a large integer B

For b L B do

Sample Xii XFbasindepr.us from E
Compute TIB t.ly b b EXu

Then set F Tief II and Va EIL b
E.tn

as well as GIG GEIL b Ex for all x

To retrive guantiles of GT hort the values TI TIB
D BIf TI IT represent the ordered values then set

LBG9GIs Tn 12J






































































































































Exampklwntinued lonsiderT tr.LK X F KLIN g Isn

A natural choice of In is the empirical distribution Fn which has
calf given by

EH L ICKE
The boostrap version of Tn is

Tritt iii E klein E IST
where

n

L XI SEI III E xdEH.tn xi

Then GF is the calf given by

End al F Ist Ex

So the C a 100 C I for µ based on the bootstrap
estimate of G would be given by

4 cnn.E.in Ära
but we need to get Monte Carlo approximations to Gian and GI
To obtain a MonteCarlo approximation to Gut choose a large
integer B and for b L B do

b b
Draw XY XF as indep.r.us romdistwithcdfE
which can be done by sampling with replacement from X Xn

b b b
Compute TI MEI xD

We use as the upper 9 guantile of the v Im T
t

n
so the bootstrap 1 2 1002 C I for µ would be given by

In LB DIE LBS

gg






































































































































First results for the IED bootstrap for the sample mean

Suppose X Xu are independent raus with edf F mean µand variance 540

Let

F talk sk F FCK
and suppose we are interested in estimating

Ein Ein In µ o

Varta Var F En 5

using the EID bootstrap

Let E be the empirical distribution function based on X Xn
Then

4 tnlxi.in E THE F

since In xd EC t.IE
We have

F in F in t xD
rn Hit I

at Hi In

0

so the bootstrap estimate of EI is exactly egal to ETu 0

We also have

Vati Vvk xD






































































































































2

n HEHE E

in EI Hit F Hit E

t.IE lXI Fn

XY

In Hi In

35 as n 8

We see that the boostrap estimator of Varta 5 is
consistent

Note that in this situation we could find F Tn and
VazTu without doing any Monte Carlo simulations

The bootstrap does not always entail resampling from the data

R example

TIMESERIESBOOTSTRAPAPPROACHES

kppos.SK TER is a stationary time series such that
X Xn kam joint distribution En Wewill use Fn to represent the
joint distribution as well as the joint distribution function

If we were to follow the same steps es in the EID case given
home quantity

F talk sk
we would define the bootstrap version IT of Tn as

t.nl xF.E






































































































































where E is an estimator of the joint distribution Fn and
XI are random variables with joint distribution En

The problem with this is that it is difficult to get
a good estimator Er of En

There are many bootstrapping schemes for time series data
We first consider block bootstrap methods

BLOCK

BASEDMETHBh.ch
bootstrap methods are based on the assumption that the

joint distribution Fu of X X can be approximated bythe product of joint distributions of blocks of random variables
among X Xu That is if we break Xu into blocks
of size h assuming for the moment that ale is integer valued for
the sake of simplicity then Fn may be written as

x snn P X EK XnEx

PCXGDEHEXG.net Xjr EX

Fetzen
where Fela sne P XiEXi XeEXe Such an approximation
to En can be made under strict stationarity and if the dependence
between r.us decreases the further apart they are in time

The blocks are constructed according to this diagram

X Xe Yet Xze XG.net Xjr Xn.lt X

Block 2 Block2 Block j Bloch all

A block bootstrap version of Tn tnlk.i.Xn.IE maybe defined as

tu E










































when Ä is the distribution with calf given by

Ä x a FÄHIG nett e D
when 1 is an estimator of Fe

We consider two ways of estimating Fe

Non ppingbl tstrap
BBfiDenotebyFfnNBBtheNBBestim.tor

of En It has cdf
given by

all NBB
TEN x IT e 4 Bett X

g

where ÄNBB is the distribution placing mass Yale
on each of the blocks

Kf Bett Xjr j L sn l

To generate a Monte Carlo draw Xi from EIN sample
with replacement all times from the blocks

4 Bett e j 4 n.tne

and concatenate the sampled blocks to obtain XI XI

Application.TN 3Btothemean

htTn tnlX Xn Fn Tn In EI and suppose we wish
to estimate Wart using the NBB

The NBB version of Tn is

Titeln E ELFI E
when F is expection conditional on X Xu and based on the
distribution TEN 17J



The NBB estimator of Varta is VAHIT where Vaz
operates according to FIND

To find Vaz we first find E FI We have

F FI Ext Exit

In II et t TX

Hit txt
nie

t t 4 ext t X
g Mh ja

n
L X
n E

In

Now WayTn is given by

KÄLTE F n I

n Effekt Fin

byindp.veblocks and L ÄffKÄDett Fn t tl e x

hyEEtLxittitxiI Fnk
y fFKxI.ge F t.it e

EI In t.it Xe xn J
L III nett F t.e.tk e xn
9



III Der ICH Das F

Äfft IHN E HEE

f Bfh
like sample auf of block

Ihre
where

j Äft µ
tut F Ht In k te e

o otherwise

NBI 3
The function h is basically the mean of sample autocovariance functions
computed on the blocks

XG.ge I Xje j I n l

Under some mild conditions on the dependence structure of the time
Series we have

Vor Tn F Hh as u

where d is the auf of 9ktTERI as well as

Jj h nö Kh as n
1h14 h p

provided h 78 and o as



Moving block bootstrap MBB
2

MBBDenote by Ä the MBB estimator of En It has cdf
given by

all
MBBFMBB x IT e 4 Bett Xin El

MBBwhere Ä is the distribution placing mass Ku et
on each of the blocks

X Xjte i g L n htt

To generate a Monte Carlo draw XY from FÜR sample
with replacement all times from the blocks

X Xjte i g L n htt

and concatenate the sampled blocks to obtain XI XI

Application of the MBB to the mean

4 Tn talk gl n Fn Tn In EI and suppose we wish
to estimate Wart using the MBB

The MBB version of Tu is

t.lxi.i.XIEMBD TLII E.IE
when F is expection conditional on X Xu and based on the
distribution EIN

The MBB estimator of Varta is VAHIT where Vaz
operates according to FIND



To find Vaz we first find E FI We have

II E In

In F II XI Dent Xie

L Htt the
l

n htt
X t tl jte

ln ltIj i

InIe IiiXitIEFXitIn.fz itDX

Ii xitEIxit.E.e.EE
MBB
Xml

noting that less weight is assigned by ÄI to data points near
the boundaries as these appear in fewer blocks Sie the diagram

X X Xe Xp Xet a Kei Ke

in only Key Xl Xet Xp Xp
n

oneblock

in firsttwo Xe Xe Xet Hey Xze
blocks

Xe Xet Xze Xze

These
appear in l blocks

IT Fr II FI The MBB estimator of Varta is

k 4 Iii



n It FIEBBY

n ft XY Ini

µ 4 11,4 4
k 1 HÄ ini t.tl e xn.enay j
t IIE XI.net FI t.net XIe xn.eMBB J

tFtf XT FniBB t tCxe IneB
g

te FIX Für t tk i e xn.eBBJ

Ee IItrEElXi itr xneBD X s xn.eBD

Hau Fi 4 xiii

h lik sample auf of block j

where

µ p III Hau Iii Ht xiii nun e

0 otherwise

ID



MBB
The function is essentially the mean of sample autocovariance functions
computed on the blocks

Xj Xjte I g L n htt

Under some mild conditions on the dependence structure of the time
Series we have

War Tn ftp.t h asn soo

where d is the auf of 9ktTERI as well as

MBB 0
h

P
Kh as n

1h14 h p

provided h 78 auch as


