STAT 720 sp 2019 hw 2

due on Monday, Feb 25th, 2019
Please make use of my R package tscourse to complete the homework. You can install the package with the following commands:

```
library(devtools)
devtools::install_github("gregorkb/tscourse")
```

This pulls the package from where it resides in my github repository. You will first need to install the devtools package using install.packages("devtools").

1. Consider the $\operatorname{AR}(1)$ model

$$
\begin{equation*}
X_{t}=\mu+\phi\left(X_{t-1}-\mu\right)+Z_{t}, \quad t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ are independent standard Normal random variables.
(a) Generate a realization of length $n=100$ from the above time series with $\phi=0.9$ and $\mu=0$. Then make three plots: Plot the simulated time series, the sample autocorrelation function with the true autocorrelations overlaid, and the sample partial autocorrelations with the true partial autocorrelations overlaid. Your plots should resemble the following:

(b) Give an expression in terms of ϕ for the value σ_{∞}^{2} such that

$$
\sqrt{n}\left(\bar{X}_{n}-\mu\right) \rightarrow \operatorname{Normal}\left(0, \sigma_{\infty}^{2}\right) \quad \text { in distribution }
$$

as $n \rightarrow \infty$.
(c) Give an expression for a confidence interval for μ which will contain μ with probability 0.95 as $n \rightarrow \infty$.
(d) For each of the sample sizes $n=10,50,200$, generate 500 length- n realizations of the time series and construct the confidence interval you suggested in the previous part. Compute the proportion of data sets out of the 500 for which the confidence interval contained the true value of μ. Comment on what happens to the coverage probability of the confidence interval as n is increased.
2. Let $\hat{\gamma}_{n}(\cdot)$ be the sample autocovariance function computed on any sequence of numbers x_{1}, \ldots, x_{n}.
(a) Show that $\sum_{h=-\infty}^{\infty} \hat{\gamma}_{n}(h)=0$.
(b) Suggest a strategy for estimating $\sigma_{\infty}^{2}=\sum_{h=-\infty}^{\infty} \gamma(h)$.
3. For some finite $k \geq 1$, let $\boldsymbol{\rho}_{k}=(\rho(1), \ldots, \rho(k))^{T}$ and $\hat{\boldsymbol{\rho}}_{n}(k)=\left(\hat{\rho}_{n}(1), \ldots, \hat{\rho}_{n}(k)\right)^{T}$, where $\rho(\cdot)$ is the autocorrelation function of a stationary time series and $\hat{\rho}_{n}(\cdot)$ is the sample autocorrelation function. Under some conditions on the time series (see Thm 7.2.2. of B\&D Theory), we have

$$
\sqrt{n}\left(\hat{\boldsymbol{\rho}}_{k}-\boldsymbol{\rho}_{k}\right) \rightarrow \operatorname{Normal}\left(\mathbf{0}, \mathbf{W}_{k}\right) \quad \text { in distribution }
$$

as $n \rightarrow \infty$, where \mathbf{W}_{k} is the $k \times k$ matrix with entries given by

$$
w_{i j}=\sum_{l=1}^{\infty}[\rho(l+i)+\rho(l-i)-2 \rho(i) \rho(l)][\rho(l+j)+\rho(l-j)-2 \rho(j) \rho(l)]
$$

for $1 \leq i, j \leq k$. Now consider the $\operatorname{AR}(1)$ model from Question 1, which satisfies the conditions for the above to hold.
(a) Give an expression for the value of $\rho(h)$ for any $h \geq 1$.
(b) Find an expression for the asymptotic variance of $\sqrt{n} \hat{\rho}(1)$.
(c) Suggest a way to construct a 95% confidence interval for the parameter ϕ based on observed data (you will have to estimate the asymptotic variance by plugging in a value).
(d) Evaluate the performance of your interval in a simulation study. Generate 500 realizations of length $n=500$ from the $\mathrm{AR}(1)$ model from Question 1 with $\phi=0.8$ and report the proportion of times your interval contained 0.8.
4. Consider the ARMA $(1,1)$ process defined by

$$
X_{t}-\phi X_{t-1}=Z_{t}+\theta Z_{t-1} \quad \text { for } t \in \mathbb{Z}
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ is $\mathrm{WN}\left(0, \sigma^{2}\right)$ and $|\phi|<1$ and $|\theta|<1$.
(a) Give the $\mathrm{MA}(\infty)$ representation of the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$.
(b) Show that the autocovariance function is given by

$$
\gamma(h)= \begin{cases}{\left[\frac{(\theta+\phi)^{2}}{1-\phi^{2}}+1\right] \sigma^{2},} & \text { if } h=0 \\ \phi^{|h|-1}(\theta+\phi)\left[1+\frac{(\theta+\phi) \phi^{2}}{1-\phi^{2}}\right] \sigma^{2}, & \text { if }|h| \geq 1\end{cases}
$$

(c) Use the $\mathrm{MA}(\infty)$ representation of $\left\{X_{t}, t \in \mathbb{Z}\right\}$ to generate realizations of length $n=500$ of the time series by truncating to an $\mathrm{MA}(50)$ representation. Do this under your own choices of the parameters ϕ, θ, and σ^{2} and then make three plots: Plot a realization of the time series, the sample autocorrelation function with the true autocorrelations overlaid, and the sample partial autocorrelation function with the true partial autocorrelations overlaid. Report the values of ϕ, θ, and σ^{2} that you chose. My plots with $\phi=0.9, \theta=0.7$, and $\sigma^{2}=1$ look like the following:

(d) Generate a realization of the times series of length $n=500$ under the choices $\phi=0.5, \theta=0.2$ and $\sigma^{2}=1$. Then use the Durbin-Levinson algorithm to obtain the one-step-ahead predictions for X_{1}, \ldots, X_{n}. Moreover, construct 95% prediction intervals for the one-step-ahead predictions using the output of the Durbin-Levinson algorithm and make a plot of the time series which shows the one-step-ahead prediction intervals. Report the proportion of times the one-stepahead prediction interval contained the next value in the series.
My simulation produced the plot below, in which the vertical lines mark the time points at which the value of the time series fell outside of the prediction interval. The prediction interval on my data set contained the next observation 95.6% of the time.

(e) Now use the innovations algorithm to make h-step ahead predictions: Generate a realization of the time series of length $n=500$ under $\phi=0.9, \theta=0.7$, and $\sigma^{2}=1$, and get one-step-ahead predictions for X_{1}, \ldots, X_{n+1} as well as predictions of $X_{n+2}, \ldots, X_{n+25}$. Make a plot of the time series with the predicted values and 95% prediction intervals overlaid. Plot only over the range of time points from $n-h, \ldots, n+h$, for $h=25$. My plot looks like this:

5. Problem 3.9 from B\&D Intro. The data set for parts (b) and (c) is in the R package datasets and can be read into R with the command data(USAccDeaths).

