STAT 720 sp 2019 hw 2
due on Monday, Feb 25th, 2019

Please make use of my R package tscourse to complete the
homework. You can install the package with the following com-
mands:

library(devtools)
devtools: :install_github("gregorkb/tscourse")

This pulls the package from where it resides in my github repos-
itory. You will first need to install the devtools package using
install.packages("devtools").

1. Consider the AR(1) model
Xt =W + ¢(Xt—1 - H’) + Ztv le Za (1)

where {Z;,t € Z} are independent standard Normal random variables.

(a) Generate a realization of length n = 100 from the above time series with ¢ = 0.9 and p = 0.
Then make three plots: Plot the simulated time series, the sample autocorrelation function
with the true autocorrelations overlaid, and the sample partial autocorrelations with the true
partial autocorrelations overlaid. Your plots should resemble the following:
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The following R code performs the above:

phi <- .9

mu <- O

sigma <- 1

n <- 100

B <- 1000 # length of burn-in period
X0 <- numeric(B+n)

X0[1] <- 0




for( i in 2:(B + n))
{
X0[i] <- mu + phi * XO0[i-1] + rnorm(1,0,sigma)

X <= X0[-c(1:B)]

gamma <- phi~c(0:n)/(1-phi~2)
rho <- gamma/gamma[1]
alpha <- DL.1step(X,gamma[1],gamma[-1])$alpha

gamma.hat <- sample.acf(X,max.lag=length(X))$gamma.hat
rho.hat <- gamma.hat/gamma.hat[1]
alpha.hat <- DL.1step(X,gamma.hat[1],gamma.hat[-1])$alpha

par (mfrow=c(1,3))

plot(X,type="1",xlab="time")

plot(rho,ylim=range (rho,rho.hat),pch=19,
ylab="true acf, sample acf",xlab="lag")

points(rho.hat,type="h")

plot(alpha,ylim=range(alpha,alpha.hat),pch=19,

ylab="true pacf, sample pacf",xlab="lag")
points(alpha.hat,type="h")

(b) Give an expression in terms of ¢ for the value o2 such that
Vn(X, — p) — Normal(0,02) in distribution

as n — 0.

We have
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(c)

Give an expression for a confidence interval for  which will contain p with probability 0.95 as
n — 0o.

In light of the previous part, we may use the interval
X, + 1.960,,n""2,

taking o, from the previous part.

For each of the sample sizes n = 10,50, 200, generate 500 length-n realizations of the time
series and construct the confidence interval you suggested in the previous part. Compute the
proportion of data sets out of the 500 for which the confidence interval contained the true value
of . Comment on what happens to the coverage probability of the confidence interval as n is
increased.

The following code runs the simulations:

S <- 500
B <- 1000
n <- 200 # put different values of n here

sigma.inf <- sqrt( 1/(1 - phi)~2 )
X.bar <- lo.ci <- up.ci <- numeric(S)

for(s in 1:8)

{

X0 <- numeric(B+n)

X0[1] <=0

for( i in 2:(B + n))

{

X0[i] <- phi * X0[i-1] + rnorm(1)

}

X <= X0[-c(1:B)]

X.bar[s] <- mean(X)

lo.ci[s] <- X.bar[s] - 1.96 * sigma.inf/sqrt(n)

up.cils] <- X.bar[s] + 1.96 * sigma.inf/sqrt(n)
}

coverage <- mean( (lo.ci < 0) & (up.ci > 0) )
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For n = 10, I got a coverage of 0.996; for n = 50, 0.974; for n = 200, 0.946. As n is
increased, the coverage approaches the nominal coverage of 95%.

2. Let 4,(+) be the sample autocovariance function computed on any sequence of numbers z1, ..., z,.
(a) Show that Y »° _ 4,(h) =0.

We have
o n—1 1 n—|h| - -
Z ’Ayn(h) = Z ﬁ (Xz - Xn)(XiHh\ - Xn)
h=—o0 =—(n-1) i=1
1 n n ~ -
= Z Z(Xz - Xn)(XJ - Xy)
i=1 j=1
=0.

(b) Suggest a strategy for estimating o2 = 7~ ~(h).

The easiest way would be to assume a model for the time series which gives us an expression
for Y 72 ~y(h) in terms of some parameters. We could estimate these parameters and plug
them into this expression to get an estimate of 0% . In Question 1, for example, we saw
that under the AR(1) model the sum Y ;° _ ~(h) was given by (1 — ¢) %02

3. For some finite k > 1, let p, = (p(1),...,p(k))" and p,(k) = (pn(1),. .., p.(k))", where p(-) is the
autocorrelation function of a stationary time series and p,(+) is the sample autocorrelation function.
Under some conditions on the time series (see Thm 7.2.2. of B&D Theory), we have

Vn(p, — pp) — Normal(0, W},) in distribution

as n — 0o, where Wy, is the k£ x k matrix with entries given by

o0

wi =Y _[p(l+14) + p(l — i) = 2p(i)p(D][p(L + ) + p(l = 5) — 2p()p(1)]

=1

for 1 <i,7 < k. Now consider the AR(1) model from Question 1, which satisfies the conditions for
the above to hold.

(a) Give an expression for the value of p(h) for any h > 1.

From work done in class, we have that the autocovariance function is given by

|h|
1h) = 1550,
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so that

p(h) = 7(h)/7(0) = ¢".

(b) Find an expression for the asymptotic variance of y/np(1).

The asymptotic variance is given by w;, which is
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(c) Suggest a way to construct a 95% confidence interval for the parameter ¢ based on observed
data (you will have to estimate the asymptotic variance by plugging in a value).

Since p(1) = ¢, one way to construct the interval would be

1—p(1)*

5(1) + 1.96
p(1) -

(d) Evaluate the performance of your interval in a simulation study. Generate 500 realizations of
length n = 500 from the AR(1) model from Question 1 with ¢ = 0.8 and report the proportion
of times your interval contained 0.8.

The following R code runs the simulation:

phi <- .8

Page 5



S <- 500
B <- 1000
n <- 500

sigma.inf <- sqrt( 1/(1 - phi)~2 )
rho.hat.1 <- lo.ci <- up.ci <- numeric(S)

for(s in 1:8)

{

X0 <- numeric(B+n)

X0[1] <=0

for( i in 2:(B + n))

{

X0[i] <- phi * X0[i-1] + rnorm(1)

}

X <= X0[-c(1:B)]

rho.hat.1[s] <- sample.acf(X,max.lag=10)$rho.hat[2]

lo.ci[s] <- rho.hat.1[s] - 1.96 * sqrt( 1 - rho.hat.1[s]"2)/sqrt(n)

up.cils] <- rho.hat.1[s] + 1.96 * sqrt( 1 - rho.hat.1[s]"2)/sqrt(n)
}

coverage <- mean( (lo.ci < phi) & (up.ci > phi) )

I got a coverage probability of 0.962.

4. Consider the ARMA(1, 1) process defined by
Xt — (ﬁXt,l = Zt + OZt,1 for t e Z,

where {Z;,t € Z} is WN(0,0?) and |¢| < 1 and |6] < 1.
(a) Give the MA(o0) representation of the time series {X;,t € Z}.

We have .
Xe =Y 0%,
=0

where ,
p, =] ¥TO+0), forj=1
T, for j = 0.

Page 6



(b) Show that the autocovariance function is given by

[(fj—g+1}027 if h =0
v(h) = )
¢\h\71(9_|_ ¢) |:1 + %] 0'27 if ’h’ 2 1.

(c¢) Use the MA(o0) representation of { Xy, ¢ € Z} to generate realizations of length n = 500 of the
time series by truncating to an MA(50) representation. Do this under your own choices of the
parameters ¢, 0, and 0% and then make three plots: Plot a realization of the time series, the
sample autocorrelation function with the true autocorrelations overlaid, and the sample partial

autocorrelation function with the true partial autocorrelations overlaid. Report the values of
o, 0, and 0® that you chose. My plots with ¢ = 0.9, § = 0.7, and 0% = 1 look like the following:
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The following R code generates the data and produces the plots:

phi <- .9
theta <- .7

B <- 50 # truncate the MA(inf) representation of the time series
n <- 500

psi <= c(1,phi~c(0:(B-1))*(phi + theta))

Z <- rnorm(n+B)
X <- numeric(n)

for(i in 1:n)
{
ind <- (B+i):i
X[i] <- sum(psi*Z[ind])
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max.lag <- 100
gamma <- c((theta + phi)~2/(1-phi~2) + 1,
phi~c(0: (max.lag-1))*(theta+phi)*(1+(theta+phi)*phi~2/(1-phi~2)))
rho <- gamma/gamma[1]
alpha <- DL.1step(X[1:max.lag],gamma[1],gammal[-1])$alpha

gamma.hat <- sample.acf (X,max.lag=max.lag)$gamma.hat
rho.hat <- gamma.hat/gamma.hat[1]
alpha.hat <- DL.1step(X[1:max.lag],gamma.hat[1],gamma.hat[-1])$alpha

par (mfrow=c(1,3))

plot(X,type="1",xlab="time")

plot(rho,ylim=range(rho,rho.hat) ,pch=19,
ylab="true acf, sample acf",xlab="lag")

points(rho.hat,type="h")

plot(alpha,ylim=range (alpha,alpha.hat),pch=19,

ylab="true pacf, sample pacf",xlab="lag")
points(alpha.hat,type="h")

(d) Generate a realization of the times series of length n = 500 under the choices ¢ = 0.5, = 0.2
and 0?2 = 1. Then use the Durbin-Levinson algorithm to obtain the one-step-ahead predictions
for X1, ..., X,. Moreover, construct 95% prediction intervals for the one-step-ahead predictions
using the output of the Durbin-Levinson algorithm and make a plot of the time series which
shows the one-step-ahead prediction intervals. Report the proportion of times the one-step-
ahead prediction interval contained the next value in the series.

My simulation produced the plot below, in which the vertical lines mark the time points at
which the value of the time series fell outside of the prediction interval. The prediction interval
on my data set contained the next observation 95.6% of the time.
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The following R code produces the plot and computes the coverage over X, ..., X, of the
95% one-step-ahead prediction interval:

gamma <- c( (theta + phi)~2/(1-phi~2) + 1,
phi~c(0: (n-1))*(theta + phi)*(1 + (theta+phi)*phi~2/(1-phi~2)) )

DL.1step.out <- DL.1step(X-mean(X),gamma[1],gammal[-1])
X.pred <- DL.1step.out$X.pred + mean(X)

lo.pred <- X.pred - 1.96 * sqrt(DL.1step.out$v)
up.pred <- X.pred + 1.96 * sqrt(DL.1step.out$v)

coverage <- mean(lo.pred[-(n+1)] < X & X < up.pred[-(n+1)])

plot(X,type="1",ylim=range(lo.pred[-1],up.pred[-1]) ,x1lab="Time")
lines(lo.pred[-(n+1)],1ty=3)

lines(up.pred[-(n+1)],1ty=3)

abline(v= which(lo.pred[-(n+1)] > X | X > up.pred[-(n+1)]),col="red")

(e) Now use the innovations algorithm to make h-step ahead predictions: Generate a realization of
the time series of length n = 500 under ¢ = 0.9, # = 0.7, and ¢? = 1, and get one-step-ahead
predictions for X, ..., X1 as well as predictions of X, 1o, ..., X, 105. Make a plot of the time
series with the predicted values and 95% prediction intervals overlaid. Plot only over the range
of time points from n — h, ..., n + h, for h = 25. My plot looks like this:
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The following R code generates the plot.

phi <- .9
theta <- .7

B <- 50
n <- 500

psi <= c(1,phi~c(0:(B-1))*(phi + theta))

Z <- rnorm(n+B)
X <- numeric(n)

for(i in 1:n)

{

ind <- (B+i):i

X[i] <- sum(psi*Z[ind])
}
h <- 25

gamma <- c( (theta + phi)~2/(1-phi~2)+1,
phi~c(0: (n+h-2)) * (theta+phi)* (1+(theta+phi)*phi~2/(1-phi~2)))

K <- matrix(NA,n+h,n+h)
for(j in 1:(n+h))
for(i in 1:(n+h))
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{
K[i,j] <- gamma[l+abs(i-j)]
}

innov.hstep.out <- innov.hstep(X-mean(X),h,K)
X.pred <- innov.hstep.out$X.pred + mean(X)

lo.pred <- X.pred - 1.96 * sqrt(innov.hstep.out$v)
up.pred <- X.pred + 1.96 * sqrt(innov.hstep.out$v)

plot(X,type="1",xlim=c(n-h,n+h) ,ylim=range(lo.pred,up.pred) ,xlab="Time")
points(innov.hstep.out$X.pred)

abline(h=0,1ty=3)

lines(lo.pred,1lty=3)

lines(up.pred,lty=3)

5. Problem 3.9 from B&D Intro. The data set for parts (b) and (c) is in the R package datasets and
can be read into R with the command data(USAccDeaths).

For the model
Yo =2+ 012, + 012219,

where {Z;,t € Z} is WN(0, 0?), we have

Cov(Yy, Yign) = Cov(Zy + 01 Zy—1 + 012212, Ziyn + 01 Zein1 + 01221 10—-12)
=E[ZiZvn + 0 ZiZsns + 0122 2y 112
+ 0121 Zyn + 07 21 Zyn + 0101221 1 Zyp1s
+ 0122119 Zsh + 01201 Z 12241 + 075219 Ze 1 h12)
o?(1+ 07 +0%), ifh=0

%0, ifh+1

= 0291291, if h+11

0'2012, if h+12

0, otherwise.

We see that we may write

v(11) 7(11 2 7(12)
0, = s 912 = s and o :’}/(1)—
L q(12) (1) 7(11)

The following R code computes estimators él, élz and 62 of 0, 615 and o on the data {VV 15X, },
where {X;,t = 1,...,72} are the values in the dataset USAccDeaths:
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data(USAccDeaths)
Y <- diff(diff (USAccDeaths,12))
gamma.hat <- sample.acf (Y)$gamma.hat

thetal.hat <- gamma.hat[12]/gamma.hat[13]

thetal2.hat <- gamma.hat[12]/gamma.hat [2]
sigma.hat <- sqrt(gamma.hat[2]/thetal2.hat)

We get 0; = —0.5923191, 6;, = —0.5627678 and 6 = 308.8488.

Page 12




