STAT 720 sp 2019 midterm

assigned: Wednesday, March 20th, 2019
due on Friday, March 22nd, 2019 at 5:00 pm in my mailbox or to me in my office.
This is a take-home exam. You may use all the course notes and any books. Do not work together with any classmates or with any other person.

1. Consider the $\mathrm{MA}(2)$ time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ defined by

$$
\begin{equation*}
X_{t}=\mu+Z_{t}+\theta_{1} Z_{t-1}+\theta_{2} Z_{t-2}, \quad \text { for all } t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\} \sim \operatorname{IID}\left(0, \sigma^{2}\right)$.
(a) Find the autocovariance function $\gamma(\cdot)$ of the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$.
(b) Find $2 \pi f(0)$, where $f(\cdot)$ is the spectral density of the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$.
(c) Verify that $2 \pi f(0)=\sum_{h=-\infty}^{\infty} \gamma(h)$.
(d) Give the form of an asymptotic 95% confidence interval for μ based on X_{1}, \ldots, X_{n}, assuming θ_{1}, θ_{2}, and σ^{2} are known.
(e) Give finite values of the parameters θ_{1} and θ_{2}, if they exist, for which the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is
i. invertible.
ii. non-invertible.
iii. non-stationary.
iv. m-dependent with $m=1$.

For each case explain your answer.
(f) Let $f(\cdot)$ be the spectral density of a stationary time series with autocovariance function $\gamma(\cdot)$. Show that $\int_{-\pi}^{\pi} f(\lambda) d \lambda=\gamma(0)$.
(g) For the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ in (1), give $\int_{-\pi}^{\pi} f(\lambda) d \lambda$ in terms of θ_{1}, θ_{2}, and σ^{2}.
(h) Assuming that $\mu, \theta_{1}, \theta_{2}$, and σ^{2} are known, give the one-step-ahead predictor \hat{X}_{1} of X_{1} based on X_{1}, \ldots, X_{n} and give the mean squared error of prediction (MSEP) associated with the predictor.
(i) Assuming that $\mu, \theta_{1}, \theta_{2}$, and σ^{2} are known, give the h-step-ahead predictors \hat{X}_{n+h} of X_{n+h} for $h>2$ based on X_{1}, \ldots, X_{n} and give the MSEP associated with the predictors.
(j) Describe in words how you would generate a realization of length 100 of the time series $\left\{X_{t}, t \in\right.$ $\mathbb{Z}\}$, where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables.
2. For each of the following time series, indicate which statements among the following four statements, if any, must be true.

$$
\begin{array}{ll}
\text { (I) it is strictly stationary } & \text { (III) it is not strictly stationary } \\
\text { (II) it is stationary } & \text { (IV) it is not stationary }
\end{array}
$$

(a) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that the covariance matrix containing the covariances among Y_{1}, \ldots, Y_{5} is given by

$$
\left(\operatorname{Cov}\left(Y_{i}, Y_{j}\right)\right)_{1 \leq i, j \leq 5}=\left[\begin{array}{ccccc}
1 & 0.9 & 0 & 0 & 0 \\
0.9 & 1 & 0.9 & 0 & 0 \\
0 & 0.9 & 1 & 0.8 & 0 \\
0 & 0 & 0.8 & 1 & 0.8 \\
0 & 0 & 0 & 0.8 & 1
\end{array}\right]
$$

(b) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that $\mathbb{E} Y_{t}=\mu$ for all $t \in \mathbb{Z}$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=(0.9)^{|i-j|}$ for $i, j \in \mathbb{Z}$.
(c) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that

$$
Y_{t}=(3 / 4) Y_{t-1}+(1 / 4) Y_{t-2}+Z_{t}, \quad t \in \mathbb{Z}
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables.
(d) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that $Y_{t} \sim \operatorname{Poisson}(\lambda)$ for all $t \in \mathbb{Z}$.
(e) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that $Y_{t} \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$ for all $t \in \mathbb{Z}$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=$ $\mathbf{1}(|i-j|>0)$ for $i, j \in \mathbb{Z}$, where $\mathbf{1}(\cdot)$ is the indicator function.
3. Suppose you play a game of Monopoly and you record after each turn the number of spaces you must move in order to reach the GO tile, resulting in a time series $\left\{X_{t}, t=1,2, \ldots\right\}$. There are 40 tiles on the Monopoly board; you begin on the GO tile and advance by moving a number of tiles equal to the sum of two dice rolls (the dice are six-sided). Your observed time series might look like this after 100 turns:

(a) Find $\mathbb{E} X_{1}$, where X_{1} is the number of spaces you must move to reach the GO tile after your first turn.
(b) Find $\mathbb{E} X_{2}$, where X_{2} is the number of spaces you must move to reach the GO tile after your second turn.
(c) Suggest a value for $\lim _{n \rightarrow \infty} \mathbb{E} X_{t}$ and argue why it is correct.
(d) Describe a transformation of the time series $\left\{X_{t}, t=1,2, \ldots\right\}$ which would result in a strictly stationary time series.
4. Let U and V be random variables such that $\operatorname{Var} U=\sigma_{U}^{2}$, $\operatorname{Var} V=\sigma_{V}^{2}$, and $\operatorname{Cov}(U, V)=\sigma_{U V}$. You wish to predict the value of U using the value of V with a predictor of the form

$$
\hat{U}=a_{0}+a_{1} V
$$

for some $a_{0}, a_{1} \in \mathbb{R}$.
(a) Find the values a_{0} and a_{1} which minimize the MSEP of the predictor \hat{U}; that is, find a_{0} and a_{1} which minimize $\mathbb{E}(U-\hat{U})^{2}$.
(b) Give the MSEP of \hat{U} under the choices of a_{0} and a_{1} from part (a).
5. Let $V_{1}, \ldots, V_{n}, V_{n+1}$ be random variables with zero mean such that

$$
\operatorname{Cov}\left(V_{i}, V_{j}\right)= \begin{cases}1, & i=j \\ 1 / 4, & |i-j| \leq 3 \\ 0, & |i-j|>3\end{cases}
$$

Consider a predictor \hat{V}_{n+1} of V_{n+1} based on V_{1}, \ldots, V_{n} which is of the form

$$
\hat{V}_{n+1}=\sum_{i=1}^{n} a_{i} V_{n+1-i} .
$$

For $n=2$, find the values of a_{1}, \ldots, a_{n} which minimize the MSEP of the predictor \hat{V}_{n+1}.
6. Consider the causal $\operatorname{ARMA}(2,1)$ time series given by

$$
X_{t}-\phi_{1} X_{t-1}-\phi_{2} X_{t-2}=Z_{t}+\theta_{1} Z_{t-1}, \quad t \in \mathbb{Z}
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ is $\mathrm{WN}\left(0, \sigma^{2}\right)$. Let $\left\{\psi_{j}, j=0,1, \ldots\right\}$ be the coefficients such that we may write

$$
X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}, \quad t \in \mathbb{Z}
$$

Give $\psi_{0}, \psi_{1}, \psi_{2}$, and ψ_{3}, in terms of ϕ_{1}, ϕ_{2}, and θ_{1}.

