STAT 720 sp 2019 midterm

assigned: Wednesday, March 20th, 2019
due on Friday, March 22nd, 2019 at 5:00 pm in my mailbox or to me in my office.
This is a take-home exam. You may use all the course notes and any books. Do not work together with any classmates or with any other person.

1. Consider the $\mathrm{MA}(2)$ time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ defined by

$$
\begin{equation*}
X_{t}=\mu+Z_{t}+\theta_{1} Z_{t-1}+\theta_{2} Z_{t-2}, \quad \text { for all } t \in \mathbb{Z} \tag{1}
\end{equation*}
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\} \sim \operatorname{IID}\left(0, \sigma^{2}\right)$.
(a) Find the autocovariance function $\gamma(\cdot)$ of the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$.

For any $h \in \mathbb{Z}$ We have

$$
\begin{aligned}
\operatorname{Cov}\left(X_{t}, X_{t+h}\right) & =\operatorname{Cov}\left(\mu+Z_{t}+\theta_{1} Z_{t-1}+\theta_{2} Z_{t-2}, \mu+Z_{t+h}+\theta_{1} Z_{t+h-1}+\theta_{2} Z_{t+h-2}\right) \\
& =\mathbb{E}\left(Z_{t}+\theta_{1} Z_{t-1}+\theta_{2} Z_{t-2}\right)\left(Z_{t+h}+\theta_{1} Z_{t+h-1}+\theta_{2} Z_{t+h-2}\right) \\
& = \begin{cases}\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right), & h=0 \\
\sigma^{2}\left(\theta_{1}+\theta_{1} \theta_{2}\right), & h= \pm 1 \\
\sigma^{2}\left(\theta_{2}+\theta_{1} \theta_{2}\right), & h= \pm 2 \\
0, & |h|>2 .\end{cases} \\
& =: \gamma(h) .
\end{aligned}
$$

(b) Find $2 \pi f(0)$, where $f(\cdot)$ is the spectral density of the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$.

We have

$$
f(\lambda)=\frac{\sigma^{2}}{2 \pi}\left|1+\theta_{1} \exp (-\iota \lambda)+\theta_{2} \exp (-\iota 2 \lambda)\right|^{2}
$$

so that

$$
2 \pi f(0)=\sigma^{2}\left(1+\theta_{1}+\theta_{2}\right)^{2}
$$

(c) Verify that $2 \pi f(0)=\sum_{h=-\infty}^{\infty} \gamma(h)$ for the time series in (1).

We have

$$
\sum_{h=-\infty}^{\infty} \gamma(h)=\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)+2 \sigma^{2}\left(\theta_{1}+\theta_{1} \theta_{2}\right)+2 \sigma^{2}\left(\theta_{2}+\theta_{1} \theta_{2}\right)=\sigma^{2}\left(1+\theta_{1}+\theta_{2}\right)^{2}=2 \pi f(0)
$$

(d) Give the form of an asymptotic 95% confidence interval for μ based on X_{1}, \ldots, X_{n}, assuming θ_{1}, θ_{2}, and σ^{2} are known.

Since $\sqrt{n}(\bar{X}-\mu) \rightarrow \operatorname{Normal}(0,2 \pi f(0))$ in distribution as $n \rightarrow \infty$, the interval

$$
\bar{X} \pm 1.96 \sigma\left(1+\theta_{1}+\theta_{2}\right) / \sqrt{n}
$$

is an asymptotic 95% confidence interval for μ.
(e) Give finite values of the parameters θ_{1} and θ_{2}, if they exist, for which the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ is
i. invertible.

The time series is invertible for $\theta_{1}=1 / 2$ and $\theta_{2}=1 / 4$, since the polynomial $1+u / 2+$ $u^{2} / 4$ has roots $-1 \pm \sqrt{3}$, which have complex modulus equal to 2 . We find that the time series is invertible if and only if

$$
\left|\theta_{2}\right|<1 \text { and }\left|\theta_{1}\right|<\left|1+\theta_{2}\right| .
$$

ii. non-invertible.

The time series is non-invertible for $\theta_{1}=1$ and $\theta_{2}=1$, since the polynomial $1+u+u^{2}$ has roots $-1 / 2 \pm \iota \sqrt{3} / 2$, which have complex modulus equal to 1 .
iii. non-stationary.

There are no values of θ_{1} and θ_{2} for which the time series is non-stationary.
iv. m-dependent with $m=1$.

Set $\theta_{2}=0$. Then we have m-dependence with $m=1$.
For each case explain your answer.
(f) Let $f(\cdot)$ be the spectral density of a stationary time series with autocovariance function $\gamma(\cdot)$. Show that $\int_{-\pi}^{\pi} f(\lambda) d \lambda=\gamma(0)$.

We have

$$
\begin{aligned}
\int_{-\pi}^{\pi} f(\lambda) d \lambda & =\int_{-\pi}^{\pi} \frac{1}{2 \pi} \sum_{h=-\infty}^{\infty} \gamma(h) \exp (-\iota h \lambda) d \lambda \\
& =\frac{1}{2 \pi} \sum_{h=-\infty}^{\infty} \gamma(h) \int_{-\pi}^{\pi}[\cos (h \lambda)-\iota \sin (h \lambda)] d \lambda \\
& =\frac{1}{2 \pi} \gamma(0) \int_{-\pi}^{\pi}[\cos (0)-\iota \sin (0)] d \lambda \\
& =\gamma(0)
\end{aligned}
$$

(g) For the time series $\left\{X_{t}, t \in \mathbb{Z}\right\}$ in (1), give $\int_{-\pi}^{\pi} f(\lambda) d \lambda$ in terms of θ_{1}, θ_{2}, and σ^{2}.

By (f), we have

$$
\int_{-\pi}^{\pi} f(\lambda) d \lambda=\gamma(0)=\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)
$$

(h) Assuming that $\mu, \theta_{1}, \theta_{2}$, and σ^{2} are known, give the one-step-ahead predictor \hat{X}_{1} of X_{1} based on X_{1}, \ldots, X_{n} and give the mean squared error of prediction (MSEP) associated with the predictor.

The predictor of X_{1} is μ, and the MSEP is the value of v_{0} from either the innovations or the Durbin-Levinson algorithm is $v_{0}=\gamma(0)=\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)$.
(i) Assuming that $\mu, \theta_{1}, \theta_{2}$, and σ^{2} are known, give the h-step-ahead predictors \hat{X}_{n+h} of X_{n+h} for $h>2$ based on X_{1}, \ldots, X_{n} and give the MSEP associated with the predictors.

For $h>2$, the predictor of X_{n+h} is simply μ, because the time series is m-dependent with $m=2$. The MSEP is again equal to $\gamma(0)=\sigma^{2}\left(1+\theta_{1}^{2}+\theta_{2}^{2}\right)$.
(j) Describe in words how you would generate a realization of length 100 of the time series $\left\{X_{t}, t \in\right.$ $\mathbb{Z}\}$, where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables.

Generate $Z_{-1}, Z_{0}, Z_{1}, \ldots, Z_{100}$ as independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables and then follow the formula in (1) to generate X_{1}, \ldots, X_{100}.
2. For each of the following time series, indicate which statements among the following four statements, if any, must be true.

$$
\begin{array}{ll}
\text { (I) it is strictly stationary } & \text { (III) it is not strictly stationary } \\
\text { (II) it is stationary } & \text { (IV) it is not stationary }
\end{array}
$$

(a) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that the covariance matrix containing the covariances among Y_{1}, \ldots, Y_{5} is given by

$$
\left(\operatorname{Cov}\left(Y_{i}, Y_{j}\right)\right)_{1 \leq i, j \leq 5}=\left[\begin{array}{ccccc}
1 & 0.9 & 0 & 0 & 0 \\
0.9 & 1 & 0.9 & 0 & 0 \\
0 & 0.9 & 1 & 0.8 & 0 \\
0 & 0 & 0.8 & 1 & 0.8 \\
0 & 0 & 0 & 0.8 & 1
\end{array}\right]
$$

It is not stationary. It is not strictly stationary.
(b) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that $\mathbb{E} Y_{t}=\mu$ for all $t \in \mathbb{Z}$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=(0.9)^{|i-j|}$ for $i, j \in \mathbb{Z}$.

It is stationary. We do not know if it is strictly stationary.
(c) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that

$$
Y_{t}=(3 / 4) Y_{t-1}+(1 / 4) Y_{t-2}+Z_{t}, \quad t \in \mathbb{Z}
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ are independent $\operatorname{Normal}\left(0, \sigma^{2}\right)$ random variables.
It is not stationary because the polynomial $1-(3 / 4) u-(1 / 4) u^{2}$ has a root with unit complex modulus. Since it is not stationary it is also not strictly stationary.
(d) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that $Y_{t} \sim \operatorname{Poisson}(\lambda)$ for all $t \in \mathbb{Z}$.

None of the statements must be true.
(e) Let $\left\{Y_{t}, t \in \mathbb{Z}\right\}$ be a time series such that $Y_{t} \sim \operatorname{Normal}\left(0, \sigma^{2}\right)$ for all $t \in \mathbb{Z}$ and $\operatorname{Cov}\left(Y_{i}, Y_{j}\right)=$ $\mathbf{1}(|i-j|>0)$ for $i, j \in \mathbb{Z}$, where $\mathbf{1}(\cdot)$ is the indicator function.

It is stationary. It is strictly stationary.
3. Suppose you play a game of Monopoly and you record after each turn the number of spaces you must move in order to reach the GO tile, resulting in a time series $\left\{X_{t}, t=1,2, \ldots\right\}$. There are 40 tiles on the Monopoly board; you begin on the GO tile and advance by moving a number of tiles equal to the sum of two dice rolls (the dice are six-sided). Your observed time series might look like this after 100 turns:

(a) Find $\mathbb{E} X_{1}$, where X_{1} is the number of spaces you must move to reach the GO tile after your first turn.

Let Z_{1} be the roll on the first turn. Then $X_{1}=40-Z_{1}$. Since $\mathbb{E} Z_{1}=7$ we have $\mathbb{E} X_{1}=33$.
(b) Find $\mathbb{E} X_{2}$, where X_{2} is the number of spaces you must move to reach the GO tile after your second turn.

Let Z_{2} be the roll on the second turn. Then $X_{2}=40-Z_{1}-Z_{2}$, so $\mathbb{E} X_{2}=40-7-7=26$.
(c) Suggest a value for $\lim _{n \rightarrow \infty} \mathbb{E} X_{t}$ and argue why it is correct.

For each $t=1,2, \ldots$, we can write

$$
X_{t}=40-\left(\sum_{j=1}^{t} Z_{t}-\left\lfloor\frac{\sum_{j=1}^{t} Z_{j}}{40}\right\rfloor 40\right)
$$

where Z_{1}, Z_{2}, \ldots are the rolls. For large t we find that X_{t} behaves like a discrete uniform distribution over the integers $1, \ldots, 40$, which has expected value 20.5 . We can see this via simulation:

```
n <- 5000 # play for 5000 turns
N <- 40
S <- 1000 # do this 1000 times
XX <- matrix(NA,S,n)
for(s in 1:S)
{
    Z <- sample(1:6,n,replace=TRUE) + sample(1:6,n,replace=TRUE)
```

```
        XX[s,] <- N - cumsum(Z) %% N
}
hist(XX[,n])
mean(XX[,n])
```

(d) Describe a transformation of the time series $\left\{X_{t}, t=1,2, \ldots\right\}$ which would result in a strictly stationary time series.

Transform to get back to the rolls. Like this in R:

```
n <- 100
N <- 40
Z <- sample(1:6,n,replace=TRUE) + sample(1:6,n,replace=TRUE)
X <- N - (cumsum(Z) - floor(cumsum(Z)/N)*N)
ZfromX <- numeric(n)
ZfromX[1] <- N - X[1]
for(i in 2:n)
{
    ZfromX[i] <- ifelse(X[i] < X[i-1],X[i-1] - X[i],40 - X[i] + X[i-1])
}
```

4. Let U and V be random variables such that $\operatorname{Var} U=\sigma_{U}^{2}$, $\operatorname{Var} V=\sigma_{V}^{2}$, and $\operatorname{Cov}(U, V)=\sigma_{U V}$. You wish to predict the value of U using the value of V with a predictor of the form

$$
\hat{U}=a_{0}+a_{1} V
$$

for some $a_{0}, a_{1} \in \mathbb{R}$.
(a) Find the values a_{0} and a_{1} which minimize the MSEP of the predictor \hat{U}; that is, find a_{0} and a_{1} which minimize $\mathbb{E}(U-\hat{U})^{2}$.

We obtain

$$
a_{0}=\mathbb{E} U-a_{1} \mathbb{E} V \quad \text { and } \quad a_{1}=\frac{\operatorname{Cov}(U, V)}{\operatorname{Var}(V)}
$$

(b) Give the MSEP of \hat{U} under the choices of a_{0} and a_{1} from part (a).

The MSEP is

$$
\operatorname{Var} U-\frac{\operatorname{Cov}(U, V)^{2}}{\operatorname{Var}(V)}=\operatorname{Var} U-\operatorname{Cov}(U, V)[\operatorname{Var}(V)]^{-1} \operatorname{Cov}(V, U)
$$

5. Let $V_{1}, \ldots, V_{n}, V_{n+1}$ be random variables with zero mean such that

$$
\operatorname{Cov}\left(V_{i}, V_{j}\right)= \begin{cases}1, & i=j \\ 1 / 4, & |i-j| \leq 3 \\ 0, & |i-j|>3\end{cases}
$$

Consider a predictor \hat{V}_{n+1} of V_{n+1} based on V_{1}, \ldots, V_{n} which is of the form

$$
\hat{V}_{n+1}=\sum_{i=1}^{n} a_{i} V_{n+1-i} .
$$

For $n=2$, find the values of a_{1}, \ldots, a_{n} which minimize the MSEP of the predictor \hat{V}_{n+1}.

The values a_{1} and a_{2} which minimize the MSEP of the predictor are

$$
\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 / 4 \\
1 / 4 & 1
\end{array}\right]^{-1}\left[\begin{array}{l}
1 / 4 \\
1 / 4
\end{array}\right]=\left[\begin{array}{l}
1 / 5 \\
1 / 5
\end{array}\right] .
$$

6. Consider the causal $\operatorname{ARMA}(2,1)$ time series given by

$$
X_{t}-\phi_{1} X_{t-1}-\phi_{2} X_{t-2}=Z_{t}+\theta_{1} Z_{t-1}, \quad t \in \mathbb{Z}
$$

where $\left\{Z_{t}, t \in \mathbb{Z}\right\}$ is $\operatorname{WN}\left(0, \sigma^{2}\right)$. Let $\left\{\psi_{j}, j=0,1, \ldots\right\}$ be the coefficients such that we may write

$$
X_{t}=\sum_{j=0}^{\infty} \psi_{j} Z_{t-j}, \quad t \in \mathbb{Z}
$$

Give $\psi_{0}, \psi_{1}, \psi_{2}$, and ψ_{3}, in terms of ϕ_{1}, ϕ_{2}, and θ_{1}.

We have

$$
\begin{aligned}
& \psi_{0}=1 \\
& \psi_{1}=\theta_{1}+\phi_{1} \\
& \psi_{2}=\phi^{2}+\phi_{1} \theta_{1}+\phi_{2} \\
& \psi_{3}=\phi_{1}^{3}+\phi_{1}^{2} \theta_{1}+2 \phi_{1} \phi_{2}+\phi_{1} \theta_{1}
\end{aligned}
$$

