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1 The Lindeberg central limit theorem

We will make much use of the following central limit theorem.

Theorem 1 (Lindeberg central limit theorem). For each n ≥ 1, let {Un1, . . . , Unrn}
be a collection of independent random variables such that EUnj = 0 and
VarUnj <∞ for j = 1, . . . , rn.

Ũnj =
Unj√∑rn

k=1 VarUnk
, j = 1, . . . , rn.

Then
rn∑
j=1

Ũnj → N(0, 1) in distribution as n→∞
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if for every ε > 0

lim
n→∞

rn∑
j=1

E|Ũnj|21(|Ũnj| > ε) = 0. (1)

Remark 1. The sequence of collections of random variables {Un1, . . . , Unrn}n≥1
introduced in the theorem is called a triangular array.

Remark 2. The variables Un1, . . . , Unrn do not need to be identically dis-
tributed.

Remark 3. The condition in (1) is called the Lindeberg condition.

A proof of the Lindeberg central limit theorem appears in the Appendix.
When stating corollaries to or applications of the Lindeberg central limit
theorem, we may drop the somewhat cumbersome triangular array notation.
For example, in the next result we introduce X1, . . . , Xn and proceed as
though with the triangular array {Xn1, . . . , Xnn}n≥1.

Corollary 1 (A simple central limit theorem). Let X1, . . . , Xn be indepen-
dent identically distributed random variables with EX1 = µ and VarX1 =
σ2 <∞ and let X̄n = n−1(X1 + · · ·+Xn). Then

√
n(X̄n − µ)/σ → N(0, 1) in distribution as n→∞.

Proof of Corollary 1. To analyze X1, . . . , Xn for increasing n, introduce the
triangular array {Xn1, . . . , Xnn}n≥1, with X̄n = n−1(Xn1 + · · ·+Xnn). Then
define Unj = Xnj − µ for j = 1, . . . , n. Then

∑n
j=1 VarUnj = nσ2 and

√
n(X̄n − µ)/σ =

∑n
i=1 Uni√∑n
j=1 VarUnj

.

Thus by Theorem 1 it is sufficient to show that the random variables

Ũni =
Uni√∑n

j=1 VarUnj
=
Xni − µ√

nσ
, i = 1, . . . , n, n ≥ 1,
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satisfy the Lindeberg condition (1). For any ε > 0 we have

n∑
i=1

E
∣∣∣∣Xni − µ√

nσ

∣∣∣∣2 1(∣∣∣∣Xni − µ√
nσ

∣∣∣∣ > ε

)
=

1

σ2
E|Xn1 − µ|21(|Xn1 − µ| > εσ

√
n)

→ 0 as n→∞

by the dominated convergence theorem, since E(Xn1 − µ)2 <∞.

Corollary 2 (Lindeberg CLT for linear combinations of iid rvs). For a seq. of
iid rvs ξ1, ξ2, . . . with Eξ1 = 0 and Eξ2 = σ2 < ∞ and a seq. of numbers
a1, a2, . . . that satisfy

max1≤i≤n |ai|
(
∑n

j=1 a
2
j)

1/2
→ 0 as n→∞,

we have ∑n
i=1 ai · ξi

σ(
∑n

j=1 a
2
j)

1/2
→ N(0, 1) in dist. as n→∞.

Proof of Corollary 2. For each n ≥ 1 and i = 1, . . . , n, let Uni = aiξi, so that
VarUni = a2iσ

2. Accordingly set Ũni = (
∑n

j=1 ajσ
2)−1/2aiξi. Now we show

that the triangular array {Ũni, i = 1, . . . , n}, n ≥ 1 satisfies the Lindeberg
condition. We have

lim
n→∞

n∑
i=1

E

[∣∣∣ aiξi
σ(
∑n

j=1 a
2
j)

1/2

∣∣∣21(∣∣∣ aiξi
σ(
∑n

j=1 a
2
j)

1/2

∣∣∣ > ε

)]

= lim
n→∞

n∑
i=1

a2i
σ2
∑n

j=1 a
2
j

Eξ2i 1
(
|aiξi| > εσ(

∑n
j=1 a

2
j)

1/2
)

≤ lim
n→∞

n∑
i=1

a2i
σ2
∑n

j=1 a
2
j

Eξ211
(

( max
1≤i≤n

|ai|)|ξ1| > εσ(
∑n

j=1 a
2
j)

1/2

)

=
1

σ2
lim
n→∞

Eξ211

(
|ξ1| > εσ

(
∑n

j=1 a
2
j)

1/2

max1≤i≤n |ai|

)
= 0

by the dominated convergence theorem, since Eξ21 <∞ and by the assump-
tion on the sequence a1, a2, . . . .
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2 Lindeberg CLT for regression

The Lindeberg central limit theorem is very useful for establishing the asymp-
totic Normality of linear regression coefficients, as these can be represented
as the sum of differently-weighted residuals.

2.1 Simple linear regression with no intercept

Example 1 (Application of Lindeberg CLT to simple linear regression). For
each n ≥ 1, let

Yi = xiβ + εi, i = 1, . . . , n,

where ε1, . . . , εn are independent identically distributed random variables
such that Eε1 = 0 and Var ε1 = σ2 < ∞ and x1, . . . , xn are fixed constants,
and let β̂n =

∑n
i=1 xiYi/

∑n
j=1 x

2
i . Then if

max1≤i≤n |xi|
(
∑n

i=1 x
2
i )

1/2
→ 0 as n→∞ (2)

we have

√
nσ−1(n−1

∑n
j=1 x

2
j)

1/2(β̂n − β)→ N(0, 1) in distribution as n→∞. (3)

To show (3), we write

√
nσ−1(n−1

∑n
j=1 x

2
j)

1/2(β̂n − β) =

∑n
i=1 xiεi

σ(
∑n

j=1 x
2
j)

1/2
.

Then Corollary 2 gives that the condition (2) is sufficient for (3).

2.2 Multiple linear regression

The following is a multivariate extension of the Lindeberg central limit the-
orem.

Theorem 2 (Multivariate Lindeberg central limit theorem). For each n ≥ 1,
let Un1, . . . , Unn ∈ Rd be independent random vectors such that EUni = 0 and
CovUni <∞ for i = 1, . . . , n. Let

Ũni =
(∑n

j=1 CovUnj

)−1/2
Uni, i = 1, . . . , n.
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Then
n∑
i=1

Ũni → N(0, Id) in distribution as n→∞

if for every ε > 0

lim
n→∞

n∑
i=1

E‖Ũni‖21(‖Ũni‖ > ε) = 0. (4)

Remark 4. By CovUni < ∞, we mean that the largest eigenvalue of the
covariance matrix CovUni is finite. This means that for any vector a ∈ R,
Var aTUni < ∞; no linear combination of the variables in Uni can result in
an infinite-variance random variable.

Proof of Theorem 2. By the Cramer-Wold device, it is sufficient to show that
for any a ∈ Rd such that ‖a‖2 = 1, we have

aT
n∑
i=1

Ũni =

∑n
i=1 a

T Ũni√∑n
i=1 Var aT Ũni

→ N(0, 1) in distribution as n→∞. (5)

We establish the convergence in distribution in (5) by showing that the ran-
dom variables

aT Ũni, i = 1, . . . , n, n ≥ 1,

satisfy the univariate Lindeberg condition (1). Using the Cauchy-Schwarz
inequality and the fact that a is a unit vector, for any ε > 0 we have

n∑
i=1

E|aT Ũni|21(|aT Ũni| > ε) ≤
n∑
i=1

E‖a‖22‖Ũni‖221(‖a‖2‖Ũni‖2 > ε)

=
n∑
i=1

E‖Ũni‖221(‖Ũni‖2 > ε),

which goes to zero as n→∞ by assumption.

The multivariate Lindeberg central limit theorem can be used to establish
the joint asymptotic Normality of regression coefficients in multiple linear
regression.
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Example 2 (Application of multivariate Lindeberg CLT to linear regres-
sion). For each n ≥ 1, let

Yi = xTi β + εi, i = 1, . . . , n,

where ε1, . . . , εn are independent identically distributed random variables
such that Eε1 = 0 and Var ε1 = σ2 < ∞ and x1, . . . ,xn ∈ Rd are fixed
vectors of dimension d ≤ n, and let β̂n = (XT

nXn)−1XT
nYn, where Xn =

(x1, . . . ,xn)T and Yn = (Y1, . . . , Yn)T . In addition let hii, i = 1, . . . , n, be
the diagonal entries of the matrix Xn(XT

nXn)−1XT
n . Then if

max
1≤i≤n

hii → 0 as n→∞ (6)

we have

√
nσ−1(n−1XT

nXn)1/2(β̂n − β)→ N(0, Id) in distribution as n→∞. (7)

To show (7), we set Ui = xiεi, which allows us to write

√
nσ−1(n−1XT

nXn)1/2(β̂n − β) = (σ2XT
nXn)−1/2

n∑
i=1

xiεi =

(
n∑
i=1

CovUi

)−1/2 n∑
i=1

Ui.

Then by Theorem 2 it is sufficient to show that the random vectors

Ũi =

(
n∑
i=1

CovUi

)−1/2
Ui = (σ2XT

nXn)−1/2xiεi, i = 1, . . . , n, n ≥ 1,

satisfy
n∑
i=1

E‖Ũi‖221(‖Ũi‖2 > δ)→ 0 as n→∞

for every δ > 0. Noting that hii = xTi (XT
nXn)−1xi and

n∑
i=1

hii = tr(Xn(XT
nXn)−1XT

n ) = tr(XT
nXn(XT

nXn)−1) = tr(Id) = d,

we have, for each δ > 0,

n∑
i=1

E‖Ũi‖221(‖Ũi‖2 > δ)
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=
n∑
i=1

E‖(σ2XT
nXn)−1/2xiεi‖221(‖(σ2XT

nXn)−1/2xiεi‖2 > δ)

=
1

σ2

n∑
i=1

xTi (XT
nXn)−1xiEε2i1(xTi (XT

nXn)−1xiε
2
i > δ2σ2)

≤ d

σ2
Eε211

(
( max
1≤i≤n

hii)ε
2
1 > δ2σ2

)
=

d

σ2
Eε211

(
|ε1| > δσ/

√
max
1≤i≤n

hii

)
= 0

by the dominated convergence theorem, since Eε21 < ∞ and because of the
assumption in (6). This gives the result.

2.3 Logistic regression

The multivariate Lindeberg CLT can be used to show the asymptotic Nor-
mality of the score function in Logistic regression.

Example 3 (Logistic regression). Let Y1, . . . , Yn be independent random
variables and x1, . . . ,xn ∈ Rd such that Yi ∼ Bernoulli(πi), where πi =
1/(1 + e−ηi), with ηi = xTi θ. Then the log-likelihood function for estimating
θ based on {(Yi,xi), i = 1, . . . , n} is given by

`n(θ) =
n∑
i=1

[Yi log πi + (1− Yi) log(1− π)].

Setting Y = (Y1, . . . , Yn), π = (π1, . . . , πn), Xn = [x1, . . . ,xn]T , and Wn =
diag(πi(1− πi), i = 1, . . . , n), the score and Hessian are given by

Sn(θ) =
n∑
i=1

(Yi − πi)xi = XT
n (Y − π)

Hn(θ) = −
n∑
i=1

πi(1− πi)xixTi = −XT
nWnXn.

The Lindeberg CLT gives

(XT
nWnXn)−1/2XT

n (Y − π)→ N(0, Id) (8)
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in distribution as n→∞ provided

max
1≤i≤n

hWii → 0 (9)

as n→∞, where hWii is the ith diagonal entry of the matrix Xn(XT
nWnXn)−1XT

n .
To show that (9) implies (8), set Ui = (Yi − πi)xi and

Ũi =
(∑n

j=1 CovUj

)−1/2
Ui

=
(∑n

j=1 πi(1− πi)xixTi
)−1/2

(Yi − πi)xi
= (XT

nWnXn)−1(Yi − πi)xi.

Then
∑n

i=1 Ũi = (XT
nWnXn)−1XT

n (Y − π). To establish (8) we must check
whether Ũ1, . . . Ũn satisfy the Lindeberg condition. For each ε > 0 we have

lim
n→∞

n∑
i=1

E‖Ũi‖221(‖Ũi‖2 > ε)

= lim
n→∞

n∑
i=1

E‖(XT
nWnXn)−1(Yi − πi)xi‖221(‖(XT

nWnXn)−1(Yi − πi)xi‖2 > ε)

≤ lim
n→∞

n∑
i=1

xTi (XT
nWnXn)−1xiπi(1− πi)1

(
( max
1≤j≤n

xTj (XT
nWnXn)−1xj) > ε2

)
= tr(Xn(XT

nWnXn)−1XT
nWn) lim

n→∞

(
( max
1≤j≤n

hWjj ) > ε2
)

= d lim
n→∞

(
( max
1≤j≤n

hWjj ) > ε2
)

= 0,

by the assumption in (9).

3 Some bootstrap results based on the Lin-

deberg CLT

Theorem 3 (Consistency of the IID bootstrap for the sample mean). For
each n ≥ 1, let Xn1, . . . , Xnn be independent identically distributed random
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variables with EXn1 = µ and VarXn1 = σ2 < ∞ and let X̄n = n−1(Xn1 +
· · · + Xnn). In addition, for each n ≥ 1, conditional on Xn1, . . . , Xnn, let
X∗n1, . . . , X

∗
nn be independent random variables with distribution equal to the

empirical distribution of Xn1, . . . , Xnn. Then

sup
x∈R

∣∣∣∣P∗(√nX̄∗n − X̄n

σ̂n
≤ x

)
− P

(√
n
X̄n − µ
σ

≤ x

)∣∣∣∣→ 0 in probability as n→∞,

where P∗ represents probability conditional on Xn1, . . . , Xnn, n ≥ 1, X̄∗n =
n−1(X∗n1 + · · ·+X∗nn), and σ̂2

n = n−1
∑n

i=1(Xni − X̄n)2.

Proof of Theorem 3. Since Corollary 1 gives

sup
x∈R

∣∣∣∣P (√nX̄n − µ
σ

≤ x

)
− Φ(x)

∣∣∣∣→ 0 as n→∞,

it is sufficient to show that

sup
x∈R

∣∣∣∣P∗(√nX̄∗n − X̄n

σ̂n
≤ x

)
− Φ(x)

∣∣∣∣→ 0 in probability as n→∞. (10)

Define U∗ni = X∗ni − X̄n. Then
∑n

i=1 Var∗ U
∗
ni = nσ̂2

n and

√
n(X̄∗n − X̄n)/σ̂n =

∑n
i=1 U

∗
ni√∑n

i=1 Var∗ U∗ni
.

Then by Theorem 1, (10) holds if for every ε > 0 the random variables

Ũ∗ni =
U∗ni√∑n

j=1 Var∗ U∗nj

=
X∗ni − X̄n√

nσ̂n
, i = 1, . . . , n, n ≥ 1,

satisfy

Ln(ε) :=
n∑
i=1

E∗|Ũ∗ni|21(|Ũ∗ni| > ε)→ 0 in probability as n→∞. (11)

We establish (11) by showing that for every δ > 0, P (Ln(ε) > δ) → 0 as
n→∞, making use of the fact that P (Ln(ε) > δ) ≤ δ−1ELn(ε), by Markov’s
inequality. Fix δ > 0 and assume, without loss of generality, that µ = 0 and
σ = 1. Then

δ−1ELn(ε) = δ−1E
n∑
i=1

E∗|Ũ∗ni|21(|Ũ∗ni| > ε)
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= δ−1E
n∑
i=1

E∗
∣∣∣∣X∗ni − X̄n√

nσ̂n

∣∣∣∣2 1(∣∣∣∣X∗ni − X̄n√
nσ̂n

∣∣∣∣ > ε

)
= δ−1E

n∑
i=1

1

n

n∑
j=1

∣∣∣∣Xnj − X̄n√
nσ̂n

∣∣∣∣2 1(∣∣∣∣Xnj − X̄n√
nσ̂n

∣∣∣∣ > ε

)

= δ−1E
∣∣∣∣Xn1 − X̄n

σ̂n

∣∣∣∣2 1(∣∣∣∣Xn1 − X̄n

σ̂n

∣∣∣∣ > √nε)
≤ δ−14E

[∣∣∣Xn1

σ̂n

∣∣∣21(∣∣∣Xn1

σ̂n

∣∣∣ > √nε
2

)
+
∣∣∣X̄n

σ̂n

∣∣∣21(∣∣∣X̄n

σ̂n

∣∣∣ > √nε
2

)]
≤ δ−14E

[∣∣∣Xn1

σ̂n

∣∣∣21(∣∣∣Xn1

σ̂n

∣∣∣ > √nε
2

)
+
∣∣∣X̄n

σ̂n

∣∣∣2]
= δ−14E

[∣∣∣Xn1

σ̂n

∣∣∣21(∣∣∣Xn1

σ̂n

∣∣∣ > √nε
2

)
1

(
σ̂n ≥

1

2

)
+
∣∣∣Xn1

σ̂n

∣∣∣21(∣∣∣Xn1

σ̂n

∣∣∣ > √nε
2

)
1

(
σ̂n <

1

2

)
+
∣∣∣X̄n

σ̂n

∣∣∣2]
≤ δ−18E

[
|Xn1|21

(
|Xn1| >

√
nε

4

)
1

(
σ̂n ≥

1

2

)
+
∣∣∣Xn1

σ̂n

∣∣∣21(σ̂n < 1

2

)
+
∣∣∣X̄n

σ̂n

∣∣∣2] ,
where the first inequality comes from the fact that for any two random vari-
ables U and V

E|U + V |21(|U + V | > γ) ≤ 4E
[
|U |21(U > γ/2) + |V |21(V > γ/2)

]
.

Since σ̂n → 1, 1(σ̂n ≥ 1/2) → 1 and 1(σ̂n < 1/2) → 0 in probability, and

the dominated convergence theorem gives that E|Xn1|21(|Xn1| >
√
nε
4

) → 0.
Moreover E|Xn1/σ̂n|2 < ∞ and E|X̄n/σ̂n|2 = O(n−1). This establishes (11),
completing the proof.

Theorem 4 (Consistency of residual bootstrap for linear regression). For
each n ≥ 1, let

Yi = xTi β + εi, i = 1, . . . , n,

where ε1, . . . , εn are independent identically distributed random variables such
that Eε1 = 0 and Var ε1 = σ2 < ∞ and x1, . . . ,xn ∈ Rd are fixed vec-
tors of dimension d ≤ n, and let β̂n = (XT

nXn)−1XT
nYn, where Xn =
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(x1, . . . ,xn)T and Yn = (Y1, . . . , Yn)T . Define ε̂i = Yi−xTi β̂n for i = 1, . . . , n
and, conditional on ε̂1, . . . , ε̂n, let ε∗1, . . . , ε

∗
n be independent random variables

with distribution equal to the empirical distribution of ε̂1, . . . , ε̂n. Then let
Y ∗i = xTi β̂n + ε̂∗i , i = 1, . . . , n, and define β̂

∗
n = (XT

nXn)−1XT
nY

∗
n, where

Y∗n = (Y ∗1 , . . . , Y
∗
n )T . Finally, let hii, i = 1, . . . , n, be the diagonal entries of

X(XTX)−1XT and assume

max
1≤i≤n

hii → 0 as n→∞. (12)

Then

sup
A∈B(Rd)

∣∣∣P∗ (√nσ̂−1n (n−1XT
nXn)1/2(β̂

∗
n − β̂n) ∈ A

)
− P

(√
nσ−1(n−1XT

nXn)1/2(β̂n − β) ∈ A
) ∣∣∣→ 0 in probability as n→∞,

where σ̂2
n = n−1

∑n
i=1 ε̂

2
i .

Proof of Theorem 4. From Example 2, we have

sup
A∈B(Rd)

∣∣∣P (√nσ−1(n−1XT
nXn)1/2(β̂n − β) ∈ A

)
− P (Z ∈ A)

∣∣∣→ 0 as n→∞,

where Z has the N(0, Id) distribution. Therefore it is sufficient to show that

sup
A∈B(Rd)

∣∣∣P∗ (√nσ̂−1n (n−1XT
nXn)1/2(β̂

∗
n− β̂n) ∈ A

)
− P (Z ∈ A)

∣∣∣ (13)

→ 0 in probability as n→∞.

To show (13), we set U∗i = xiε
∗
i , which allows us to write

√
nσ̂−1n (n−1XT

nXn)1/2(β̂
∗
n − β̂n) = (σ̂2

nX
T
nXn)−1/2

n∑
i=1

xiε
∗
i

=

(
n∑
i=1

CovU∗i

)−1/2 n∑
i=1

U∗i .

Then, by Theorem 2, it is sufficient to show that the random vectors

Ũ∗i =

(
n∑
i=1

CovU∗i

)−1/2
U∗i = (σ̂2

nX
T
nXn)−1/2xiε

∗
i , i = 1, . . . , n, n ≥ 1,
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satisfy

Ln(δ) :=
n∑
i=1

E∗‖Ũ∗i ‖221(‖Ũ∗i ‖2 > δ)→ 0 in probability as n→∞ (14)

for every δ > 0. We establish (14) by showing that for every δ > 0 and
every η > 0, P (Ln(δ) > η) → 0 as n → ∞, making use of the fact that
P (Ln(δ) > η) ≤ η−1ELn(δ), by Markov’s inequality. Fixing η > 0 and δ > 0
we have

η−1ELn(ε) = η−1E
n∑
i=1

E∗‖Ũ∗i ‖221(‖Ũ∗i ‖2 > δ)

= η−1E
n∑
i=1

E∗‖(σ̂2
nX

T
nXn)−1/2xiε

∗
i ‖221(‖(σ̂2

nX
T
nXn)−1/2xiε

∗
i ‖2 > δ)

= η−1E
n∑
i=1

1

n

n∑
j=1

‖(σ̂2
nX

T
nXn)−1/2xiε̂j‖221(‖(σ̂2

nX
T
nXn)−1/2xiε̂j‖2 > δ)

≤ η−14E
n∑
i=1

1

n

n∑
j=1

‖(σ̂2
nX

T
nXn)−1/2xiεj‖221(‖(σ̂2

nX
T
nXn)−1/2xiεj‖2 > δ/2)

+ η−14E
n∑
i=1

1

n

n∑
j=1

‖(σ̂2
nX

T
nXn)−1/2xix

T
j (β̂n − β)‖22

=: An +Bn, say,

where the inequality comes from using the fact that ε̂j = εj + xTj (β̂n − β)
along with the fact that for any two random variables U and V

E|U + V |21(|U + V | > γ) ≤ 4E
[
|U |21(U > γ/2) + |V |2

]
.

To show An → 0 and Bn → 0 in probability, we will need to use the consis-
tency result

σ̂2
n → σ2 in probability as n→∞, (15)

which we will show as the last part of this proof. Now, assuming without loss
of generality that σ = 1 and separating the cases σ̂n > 1/2 and σ̂n ≤ 1/2, we
have

An = η−14
n∑
i=1

E‖(σ̂2
nX

T
nXn)−1/2xiε1‖221(‖(σ̂2

nX
T
nXn)−1/2xiε1‖2 > δ/2)

12



≤ η−116
n∑
i=1

E‖(XT
nXn)−1/2xiε1‖221(‖(XT

nXn)−1/2xiε1‖2 > δ/4)1(σ̂n > 1/2)

+ η−14
n∑
i=1

1

n

n∑
j=1

E‖(σ̂2
nX

T
nXn)−1/2xiεj‖221(σ̂n ≤ 1/2)

≤ η−116
n∑
i=1

E‖(XT
nXn)−1/2xiε1‖221(‖(XT

nXn)−1/2xiε1‖2 > δ/4)

+ η−14 · d · E

[
σ̂−2n n−1

n∑
j=1

ε2j1(σ̂n ≤ 1/2)

]
→ 0 as n→∞,

where the first term goes to zero by the arguments in Example 2 and the
second term goes to zero since P (σ̂n ≤ 1/2) → 0 and Eσ̂−2n n−1

∑n
i=1 ε

2
j → 1

as n→∞. In addition

Bn = η−14E
n∑
i=1

1

n

n∑
j=1

‖(σ̂2
nX

T
nXn)−1/2xix

T
j (β̂n − β)‖22

= η−14Eσ̂−2n
1

n

n∑
j=1

n∑
i=1

xTi (XT
nXn)−1xi(x

T
j (β̂n − β))2

= η−14 · d · Eσ̂−2n
1

n

n∑
j=1

(xTj (β̂n − β))2

≤ η−14 · d · Eσ̂−2n
1

n
‖Xn(β̂n − β)‖22

→ 0 as n→∞

since Eσ̂−2n ‖Xn(β̂n − β)‖22 → d (noting that ‖Xn(β̂n − β)‖22 converges to a
χ2
d distribution by (7)).

We now prove the consistency result in (15). We have

σ̂2
n =

1

n
ε̂2i

=
1

n

n∑
i=1

[εi − xTi (β̂n − β)]2

=
1

n

n∑
i=1

ε2i − 2
1

n

n∑
i=1

εix
T
i (β̂n − β) +

1

n

n∑
i=1

|xTi (β̂n − β)|2

13



=
1

n

n∑
i=1

ε2i −
1

n
‖Xn(β̂n − β)‖22,

where the first term converges in probability to σ2 by the WLLN. Since
‖Xn(β̂n − β)‖22 converges to a χ2

d distribution, the second term converges in
probability to zero, giving the result.

Appendix

We now give a proof of the Lindeberg central limit theorem, which is essen-
tially reproduced from [1].

Proof of Theorem 1. Define the notation

σ2
ni := VarUni, i = 1, . . . , n, n ≥ 1,

and without loss of generality, let
∑n

i=1 σ
2
ni = 1 for n ≥ 1 (we can always

divide each Uni by σni). Then, for some sequence εn → 0, we have

lim
n→∞

n∑
i=1

E|Uni|21(|Uni| > εn) = 0. (16)

It is sufficient to show that the characteristic function of
∑n

i=1 Uni converges
to that of the standard Normal distribution. Letting φni represent the char-
acteristic function of Uni, i = 1, . . . , n, n ≥ 1, for any t ∈ R, we have

∣∣∣E exp

(
ιt

n∑
j=1

Uni

)
− exp

(
−t

2

2

) ∣∣∣
≤

∣∣∣∣∣
n∏
i=1

φni(t)−
n∏
i=1

(
1− t2σ2

ni

2

)∣∣∣∣∣+

∣∣∣∣∣
n∏
i=1

(
1− t2σ2

ni

2

)
−

n∏
i=1

exp

(
−t

2σ2
ni

2

)∣∣∣∣∣
≤

n∑
i=1

∣∣∣∣φni(t)− (1− t2σ2
ni

2

)∣∣∣∣+
n∑
i=1

∣∣∣∣exp

(
−t

2σ2
ni

2

)
−
(

1− t2σ2
ni

2

)∣∣∣∣
= An +Bn, say,

where the second inequality comes from Lemma 11.1.3 of [1]. We show that
An and Bn go to zero as n → ∞. Since | exp(ιx) − (1 + ιx + (ιx)2/2)| ≤

14



min{|x|3/3!, |x|2} for all x ∈ R, for all t ∈ R we have

An :=
n∑
i=1

∣∣∣∣φni(t)− (1− t2σ2
ni

2

)∣∣∣∣
=

n∑
i=1

∣∣∣∣E exp(ιtUni)−
(

1 + EιtUni +
(ιt)2

2!
EU2

ni

)∣∣∣∣
≤

n∑
i=1

Emin

{
|tUni|3

3!
, |tUni|2

}
≤

n∑
i=1

E|tUni|31(|Uni ≤ εn|) +
n∑
i=1

E|tUni|21(|Uni| > εn)

≤ t3εn

n∑
i=1

EU2
ni + t2

n∑
i=1

E|Uni|21(|Uni| > εn)

→ 0 as n→∞,

since
∑n

i=1 EU2
ni = 1 and εn → 0 and by (16). Now, since |ex−1−x| ≤ x2e|x|

for all x ∈ R (see pg. 347 of [1]), we may write

Bn :=
n∑
i=1

∣∣∣∣1− t2σ2
ni

2
− exp

(
−t

2σ2
ni

2

)∣∣∣∣
≤

n∑
i=1

(
t2σ2

ni

2

)
exp

(
t2σ2

ni

2

)
≤ t4

4

(
max
1≤i≤n

σ2
ni

)
exp

[
t2

2

(
max
1≤i≤n

σ2
ni

)] n∑
i=1

σ2
n,i

≤ t4
(

max
1≤i≤n

σ2
ni

)
exp

[
t2
(

max
1≤i≤n

σ2
ni

)]
.

Lastly, we have

max
1≤i≤n

σ2
ni = max

1≤i≤n
EU2

ni

= max
1≤i≤n

E
[
|Uni|21(|Uni| ≤ εn) + |Un,i|21(|Uni| > εn)

]
≤ ε2n +

n∑
i=1

E|Uni|21(|Uni| > εn)

15



→ 0 as n→∞,

by (16). This completes the proof.
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