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1 The Lindeberg central limit theorem

We will make much use of the following central limit theorem.

Theorem 1 (Lindeberg central limit theorem). For eachn > 1, let {Uy1, ..., Upy, }

be a collection of independent random variables such that EU,; = 0 and

VarU,; < oo forj=1,...,1,.

~ U, )
U, = J g=1,...,7,.

b)
V2o Var Uy

Then .
Z U,; — N(0,1) in distribution as n — oo
j=1
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iof for every e >0

1 - 7 . 2 7 . —
nh_{goZlEUnJ’ L(|Un;| > €) = 0. (1)
]:
Remark 1. The sequence of collections of random variables {U,1, . .., Upny, fn>1

introduced in the theorem is called a triangular array.

Remark 2. The variables U,;,...,U,,;, do not need to be identically dis-
tributed.

Remark 3. The condition in is called the Lindeberg condition.

A proof of the Lindeberg central limit theorem appears in the Appendix.
When stating corollaries to or applications of the Lindeberg central limit
theorem, we may drop the somewhat cumbersome triangular array notation.
For example, in the next result we introduce Xi,..., X, and proceed as
though with the triangular array {X,i,..., Xun}tn>1-

Corollary 1 (A simple central limit theorem). Let X, ..., X,, be indepen-
dent identically c{z’stm’buted random variables with KX, = p and Var X; =
0? < oo and let X, =n"'(X; +---+ X,,). Then

Vn(X, — u)/o — N(0,1) in distribution as n — 0o.

Proof of Corollary[]l To analyze X1, ... , Xy, for increasing n, introduce the
triangular array {X,1, ..., Xun fns1, with X, = n~ (X1 + -+ X,,,,). Then
define U,; = X,,j — pufor j = 1,...,n. Then 3" VarU,; = no” and

_ St Ui
n(X,, — o= ! )
Vn( )/ ST

Thus by Theorem |[I] it is sufficient to show that the random variables

Uni = = a 1=1,...,n, n>1,

\/ 21 Var Uy Vo
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satisfy the Lindeberg condition . For any ¢ > 0 we have

(’ \/HO' ’ > 6) = EE|Xn1 - ,u’ 1(‘Xn1 - M| > 60’\/5)
—0asn— oo
by the dominated convergence theorem, since E(X,,; — u)? < oo. O

Corollary 2 (Lindeberg CLT for linear combinations of iid rvs). For a seq. of
iid rvs £,&, ... with BE;, = 0 and E€? = 0% < oo and a seq. of numbers
ai,as, ... that satisfy

maX1<z<n |az|

(D= a7)'?

—0 asn — o0,

we have .
o(> i ])1/2

— N(0,1) in dist. as n — 0.

Proof of Corollary[3 For each n >landi=1,...,n,let U, = a;§;, so that
VarU,; = a?o®. Accordingly set U,; = (> a;o0?)"%a,¢;. Now we show
that the triangular array {Um, i=1,...,n}, n > 1 satisfies the Lindeberg

condition. We have
2 a;&;
( U(Zj:l a?)l/Q >]

Jim, ZE
- JE&Z o2 Z —en B 1 (|az§] >eo(Y a])1/2)

azfz
‘ ')1/2

Jj= la
251 ((max ] > co(S, )2
(Z?:l a?)1/2 >

SJ;%ZJQZ

i=1%
1 9

= — lim E§1 [ [6] > eo
g° n—oo

=0

maxj<i<n \az|

by the dominated convergence theorem, since E&Z < oo and by the assump-
tion on the sequence ay,as, .. .. L]



2 Lindeberg CLT for regression

The Lindeberg central limit theorem is very useful for establishing the asymp-
totic Normality of linear regression coefficients, as these can be represented
as the sum of differently-weighted residuals.

2.1 Simple linear regression with no intercept

Example 1 (Application of Lindeberg CLT to simple linear regression). For
each n > 1, let
Y;:xi/B—i_gi: ’L.Zl,...,n,

where ¢q,...,¢, are independent identically distributed random variables
such thaAt Ee; = 0 and Vare; = 02 < oo and z1, ..., 2, are fixed constants,
and let 8, = > 1", ,Yi/ Y7 7. Then if

ma}(lgign |.CEZ|

(Dimr #)Y?

—0asn— o0 (2)

we have
Vot nTt YT x?)lﬂ(ﬁn — B) = N(0,1) in distribution as n — co. (3)
To show ({3)), we write

Then Corollary [2| gives that the condition is sufficient for (3)).

2.2 Multiple linear regression

The following is a multivariate extension of the Lindeberg central limit the-
orem.

Theorem 2 (Multivariate Lindeberg central limit theorem). For eachn > 1,
let Uni, ..., U,, € R? be independent random vectors such that EU,; = 0 and
CovlU,; <oo fori=1,...,n. Let

_ ~1/2
Um' - <Z7;:1 Cov Unj) Uni7 1= 17 - N
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Then .
Z U, — N(0, 1) in distribution as n — oo

=1

iof for every e > 0

1 7 . 2 7 . —
i DS EITIP(1G] > o =o. (4)

Remark 4. By CovU,; < oo, we mean that the largest eigenvalue of the
covariance matrix Cov U,; is finite. This means that for any vector a € R,
Var a’U,; < co; no linear combination of the variables in U,,; can result in
an infinite-variance random variable.

Proof of Theorem[3. By the Cramer-Wold device, it is sufficient to show that
for any a € R? such that [|al|; = 1, we have

— N(0,1) in distribution as n — co. (5)

n n T77
7 i a Unz
CLT Z Unz — Zz:l -
i=1 \/2?21 Var a?U,,;
We establish the convergence in distribution in by showing that the ran-

dom variables
Uy, i=1,...,n, n>1,

satisfy the univariate Lindeberg condition (|1)). Using the Cauchy-Schwarz
inequality and the fact that a is a unit vector, for any ¢ > 0 we have

> Ela’Unil1(ja" Uil > €) < Y Elal3|Unill32(lallz]| Unillz > €)

i=1 =1
n
=D E|Uul31(1Unill2 > €),
i=1
which goes to zero as n — oo by assumption. O]

The multivariate Lindeberg central limit theorem can be used to establish
the joint asymptotic Normality of regression coefficients in multiple linear
regression.



Example 2 (Application of multivariate Lindeberg CLT to linear regres-
sion). For each n > 1, let

T .
Yi=x;B+¢e, i=1,...,n,

where ¢1,...,&, are independent identically distributed random variables
such that Ee; = 0 and Vare; = 02 < oo and xi,...,%, € R? are fixed
vectors of dimension d < n, and let 3, = (X7X,,) 'X?Y,,, where X, =
(x1,...,%,)7 and Y,, = (V1,...,Y,)T. In addition let hy, i = 1,...,n, be
the diagonal entries of the matrix X,,(X2X,,)"!XT. Then if

max h; — 0 as n — 0o (6)
1<i<n

we have
Vot (n ' XIX,)2(8, — B) — N(0,1,) in distribution as n — co.  (7)
To show ([7]), we set U; = x;&;, which allows us to write

" " ~1/2
Vo XIX) (B, — B) = (0°XEX,) MY e = (Z cov U") > Ui
i=1 i=1 ‘
Then by Theorem [2] it is sufficient to show that the random vectors
N ~1/2
07; - (Z COV Ul) U'L - (02X£Xn)71/2xi8i7 1= 17 e N, n Z 17
i=1
satisfy
> E|U31(|Till2 > 6) — 0 as n — o0
i=1
for every § > 0. Noting that hy; = x! (XTX,,)"'x; and
D ha = tr(Xn(XEX,) XY = (XX, (XEX,) ) = (1) = d,
i=1

we have, for each § > 0,

> EIG31(1Tilz > 6)

i=1



= E[[(0*X]X,) T xiE 31| (0P X X) T P xig |2 > 0)
=1
1 < _ _
== fo (XX, BT (x] (XX ) " xie? > §207)
=1
d 2 2 2 2
< ;Eell ((1121?2; hi;)e] > 00
d 2
= ;EGlﬂ |€1| > 60’/ 121%)7(1 hi;
=0

by the dominated convergence theorem, since Ee? < oo and because of the
assumption in (@ This gives the result.

2.3 Logistic regression

The multivariate Lindeberg CLT can be used to show the asymptotic Nor-
mality of the score function in Logistic regression.

Example 3 (Logistic regression). Let Yi,...,Y,, be independent random
variables and xi,...,x, € R? such that Y; ~ Bernoulli(r;), where m; =
1/(1+ e ™), with n; = xI'0. Then the log-likelihood function for estimating
0 based on {(Y;,x;),i=1,...,n} is given by

n

(n(0) = [Vilogm; + (1 — Y;)log(1 — )].

=1

Setting Y = (V1,...,Y,), ® = (m1,...,m), X, = [x1,...,%,]7, and W,, =
diag(m;(1 — m;),i =1,...,n), the score and Hessian are given by

Sn(0) = > (Vi —mi)x; = X[ (Y —m)

i=1

1=1

The Lindeberg CLT gives

(XIW,X,,) V*XT(Y — 7) = N(0,1,) (8)
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in distribution as n — oo provided

max h}; — 0 (9)
1<i<n

asn — oo, where b} is the ith diagonal entry of the matrix X,,(XZW,X,,) "t XZ.
To show that @ implies , set U; = (Y; — m;)x; and

U;

(5, Cov i) ",

" . —1/2
(S m = mxadd ) (¥ = m)x
(XIW,, X)) 1 (Y; — m)x;.

Then 37, Uy = (XIW,X,,)'XZ(Y — 7). To establish (§) we must check
whether Uy, . ..U, satisfy the Lindeberg condition. For each £ > 0 we have

lim Y E|T|31(|Uill2 > €)
i=1

= lim > EI[(XTW,Xo) (¥ — w310 (X WaXo) ™ (Vi = w2 > €)
n—00 4

=1

1<j<n /

< lim g x] (XIW, X)) xmi(1 — 7)1 ((max X-T(XSWan)_lxj) > 52)
n—oo
i=1

— T —1~T . w 9
_ : w 2
= d lim (@% hii) > € )

=0,

by the assumption in @

3 Some bootstrap results based on the Lin-
deberg CLT

Theorem 3 (Consistency of the IID bootstrap for the sample mean). For
each n > 1, let X,1,...,X,, be independent identically distributed random

8



variables with EX,, = pu and Var X,,; = 0> < oo and let X,, = n (X, +
-+ Xoun). In addition, for each n > 1, conditional on X1, ..., Xy, let
X;l, ..., X be independent random variables with distribution equal to the
empirical distribution of X,1, ..., Xp,. Then
X — X, X, —
P*<\/E”A—§x)—P(\/ﬁ “§x>
o

n

sup — 0 in probability as n — oo,

zeR

where P, represents probability conditional on Xy, ..., Xyp, n 2> 1, X =
nil(X:Ll + o+ Xr*m)f and 5-72L = nil Z?:l(Xm - Xn)2

Proof of Theorem[3. Since Corollary [I] gives

P (ﬁ < x) — &(x)

Xn— 1
o

sup — 0 as n — oo,

zeR

it is sufficient to show that

P, (\/ﬁu < :c) — O(x)

n

sup — 0 in probability as n — oco. (10)

zeR

Define U}, = X, — X,,. Then Y. | Var, U}, = né2 and

V(X — X,) 6y = = Uni
V 2im Var, Uy

Then by Theorem , holds if for every € > 0 the random variables
\/Z] 1 Var* Vnon

U*

1=1,...,n, n>1,

satisfy
ZE \U*,|21(|U7;| > €) — 0 in probability as n — oc. (11)

We establish by showing that for every § > 0, P(L,(¢) > d) — 0 as
n — 0o, making use of the fact that P(L,(¢) > ¢) < § 'EL,(¢), by Markov’s
inequality. Fix 6 > 0 and assume, without loss of generality, that © = 0 and
o = 1. Then

S EL,( —511@21@\ Ul > e



| (\X’H”
1 e

— 5 1EZE N

)

\/_Un

— 5 2 Xonj = Xn >
— _— €
\/_Un \/né,
X * (1X,,—
=5 | 11( ol >\/_e)
On On
) , _
< 51 || By (| K] S Ve | Xafty (| Ky Ve
| o o, 2 an Op, 2
X012 (11X,
S o IL< ~nl >@)+ h ]
X112 (11X, 1
S Ty o 2 I et vie) 5, >~
On Onp 2 2
X112 [1X, o1 X, |2
=N | A1>\/ﬁellan<——|—A
n Un 2 2 O'n

< §7ISE {|an| 1 (yxm| > fe) ((}n > %)

2 1 Xn2
ﬂ(é‘n<§>+A— :|,

On
where the first inequality comes from the fact that for any two random vari-
ables U and V

+ ’an

On

E|U+ VLU + V| > ) <AE[|JUPLU > ~/2) + [V]*L(V > ~/2)] .

Since 6, — 1, 1(6, > 1/2) — 1 and 1(6,, < 1/2) — 0 in probability, and
the dominated convergence theorem gives that E|X,,;[*1(|X,,1| > %) — 0.
Moreover E|X,,1/6,|* < co and E|X,,/6,|? = O(n™'). This establishes (11)),
completing the proof. O

Theorem 4 (Consistency of residual bootstrap for linear regression). For
each n > 1, let

T .
Yi=x;B8+¢e, 1=1,...,n,

where €1, ..., &, are independent identically distributed random variables such
that Ee; = 0 and Vare; = 02 < 00 and X1,...,%x, € R? are fized vec-
tors of dimension d < n, and let 3, = (XTX,)'XTY,, where X,, =

10



(x1,..., %)  and Y, = (Y1,...,Y,)T. Define &; = Y,-—XZT,BH fori=1,...,n
and, conditional on €1,...,E,, let ], ... €, be independent random variables
with distribution equal to the empirical distribution of €1,...,é,. Then let
Y =xIB, + &, i=1,...,n, and define B, = (XIX,)'XTY*, where
Y: = (Y, ..., YL Finally, let hy, i =1,...,n, be the diagonal entries of
X(XTX) X and assume

max h;; — 0 as n — oo. (12)
1<i<n
Then
sup |P, (\/ﬁ&;l(n‘lXZXn)l/Q(BZ - Bn) € A)
A€EB(RY)

- P (ﬁa‘l(n_ngXn)l/Q(Bn - B) e A) ‘ — 0 in probability as n — oo,

52 _ 1N 22
where 67, =n~' Y " | €.

Proof of Theorem[]. From Example [2] we have

P (ﬁa‘l(n_lXZXn)lﬂ(,@n —-B) € A) —P(Z € A)‘ — 0 as n — o0,

sup
AeB(R9)

where Z has the N (0, I,) distribution. Therefore it is sufficient to show that

P, (Vag, (0 XEX,) (B, B € A)—P(Ze )| (13)

sup
AeB(RT)

— 0 in probability as n — oo.

To show (13), we set U; = x;e}, which allows us to write
Vg (T XX (B, = B,) = (02XEX) Y xe]
i=1
n —1/2 n
= (Z Cov U) > our
i=1 i=1
Then, by Theorem [2] it is sufficient to show that the random vectors

(2

. ~1/2
UZ-* = (Z Cov U;‘) U = (&ngXn)*lﬂxigz‘, 1=1,....,n, n>1,
i=1

11



satisfy

La(8) ==Y B U7 I31(|T7 [l2 > 6) = 0 in probability as n — oo (14)

i=1

for every 6 > 0. We establish by showing that for every § > 0 and
every n > 0, P(L,(0) > n) — 0 as n — oo, making use of the fact that
P(L,(8) >n) <n'EL,(§), by Markov’s inequality. Fixing n > 0 and § > 0
we have

N 'ELy(e) = 'E Y EJTF 5110 |l > 6)
i=1

=0 'EY B (62 X0 Xa) " Axief 510162 X0Xa) " 2] |2 > 0)

i=1

n 1 n
=y 'E) - D IERXEX,) i 5111 (62X X) x5 > )
i=1 ' j=1
n 1 n
<n ME) - D O IERXEX) i 51(1[ (62X X0) x5 > 6/2)
=1 j=1

B "1l A - R
+n M4E Z - Z 1(62XEX,) %1 (B, — B)I3
=1 " =1

=: A, + B,, say,

~

where the inequality comes from using the fact that &; = ¢; + x7 (8, — B)
along with the fact that for any two random variables U and V'

E|U+ VPL(|U + V| >~) <4E[|UPPL(U > ~/2) + [V]?].

To show A, — 0 and B,, — 0 in probability, we will need to use the consis-
tency result

62 — o in probability as n — oo, (15)
which we will show as the last part of this proof. Now, assuming without loss

of generality that o = 1 and separating the cases ¢,, > 1/2 and ,, < 1/2, we
have

A =07") El(67X0X0) T e [51(11(67 X0 X0) T xien 2 > 6/2)

i=1

12



<016 ) E[(XyXa) A xia BL(N(XS Xa) T el > 6/4)1(6, > 1/2)

=1

P R _ R
+1 14ZEZEH<UZX5XT«L) V2xiei)131(60 < 1/2)

<7716 ) EI(X;Xa) e 511X X0) " e o > 6/4)

=1
+nt-d-E |6, 0 ) 21(6, < 1/2)
j=1
— 0 as n — o0,

where the first term goes to zero by the arguments in Example 2| and the
second term goes to zero since P(6, < 1/2) — 0 and Eo,>n~' 37" &5 — 1
as n — o0o. In addition

. n 1 n . B R
By = MY Y IEXIX) i B, = B

— iy U4EsE ZZ (X7 X)) 'xi(x] (B, — B))°
Jj=1 i=1

B S (T (B, - B))

j=1
— A — 1 Ve
<n'4.d- EO’TLQE”X’H<IBN - IB)HZ
—0asn— o

since E6;2|X,.(8,, — B)||2 = d (noting that |[|X,.(8, — B)||2 converges to a

x4 distribution by (7).
We now prove the consistency result in . We have

62 = L2
n
1 & .
= Z[ﬁz‘ —x; (B, - B))
i=1
- %Z i~ 2= Y ex!(B, -8B +=> X(B,—B)



I 1 ; 2
=32 X8, - B
2 e = lXa(B, = B

where the first term converges in probability to o? by the WLLN. Since
1X.,.(8,, — B)||3 converges to a x? distribution, the second term converges in
probability to zero, giving the result. O

Appendix

We now give a proof of the Lindeberg central limit theorem, which is essen-
tially reproduced from [1J.

Proof of Theorem[I. Define the notation
Ufn- =VarU,;, 1=1,...,n, n>1,

and without loss of generality, let > 02, = 1 for n > 1 (we can always
divide each U,; by ,;). Then, for some sequence ¢, — 0, we have

JLIEOZ;EW’”' 1(|Upi| > €,) = 0. (16)

It is sufficient to show that the characteristic function of Z?’:l U,; converges
to that of the standard Normal distribution. Letting ¢,; represent the char-
acteristic function of U,;, 1 =1,...,n,n > 1, for any t € R, we have

‘Eexp (Ltz Um> — exp (—5) ’
j=1

n n 252 n 202 n 252
< (1) — 1] — 1 — ——m ) T
< Tewto TT0-757) [T (- 55) - TToe (-157))

" t?02. - t202. t202.
< nit_ 1— ne _ n _ 1— n
< o fontt = (1= 55 ) [+ Do (-32) - (1-52)

= A, + B,, say,

where the second inequality comes from Lemma 11.1.3 of [I]. We show that
A, and B, go to zero as n — oo. Since |exp(tz) — (1 4+ wx + (1x)?/2)] <

14



min{|z|?/3!, |z|*} for all x € R, for all t € R we have

tPom:
Gni(t) — (1 - T)‘

()? o
Eexp(ttUyi) — | 1 + EutU,; + EU;

n

A=Y

i=1

=1
- tU,)?
i=1 ’

< EpUuP1(|Uni < nl) + Y B0 1([Uni] > €2)

i=1 i=1

<ty » EUL + ) ElUu[ 1(|Uni| > €,)
=1

i=1

2!

— 0 as n — oo,

since Y1 | EU% =1 and €, — 0 and by (16). Now, since |e? —1—x| < 22l
for all z € R (see pg. 347 of [1]), we may write

t202. t202.
1 _ 27’Ll _ eXp (_ nz) ‘

" t2o2. t2o2.
< § : ni ) ey ni
— ( 2 ) P ( 2
t* 2 t° 2 Zn 2
4 (gﬁ;@%) P {2 (%%%)} e

<t 2 t? 21
— (121?%}72 O-m) eXp |: 52%}; Oni

max 02; = max EUZ
1<i<n 1<i<n

= max E [|Um|21l(|Um] < &) + |Unil*1(|Uni| > En)}

1<i<n

Lastly, we have

<2+ EUul*L(|Uni] > n)

i=1

15



— 0 as n — o0,

by . This completes the proof. O
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