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Estimating a cdf

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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Empirical cdf
The empirical cdf of a set of values X1, . . . ,Xn ∈ R is given by

F̂n(x) =
1
n

n∑
i=1

1(Xi ≤ x) for all x ∈ R.

Discuss: Is this a legitimate cdf? (Three properties).
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Glivenko-Cantelli Theorem
If X1, . . . ,Xn is a rs from a distribution with cdf F ,

sup
x∈R
|F̂n(x)− F (x)| → 1

almost surely as n→∞.

Covered in STAT 810 and STAT 811.
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Central limit result for empirical cdf at a point
If X1, . . . ,Xn is a rs from a distribution with cdf F , then for each x ∈ R we have

√
n(F̂n(x)− F (x))→ Normal(0,F (x)[1− F (x)]) in distribution

as n→∞.

Exercise:
1 Prove the above result.
2 Use the result to construct an asymptotic (1− α)100% CI for F (x).
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Exercise: Generate some data X1, . . . ,Xn and make a plot with
1 the empirical cdf.
2 the true cdf.
3 pointwise confidence intervals at each of the values X1, . . . ,Xn.

Can plot nicely with the stepfun function in R.
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Pointwise CIs versus confidence bands for a function
A (1− α)× 100%

1 confidence interval for F at a point x is an interval [L(x),U(x)] such that

P(L(x) ≤ F (x) ≤ U(x)) ≥ 1− α.

2 confidence band for F over an interval [a, b] is a region
{(x , y) : L(x) ≤ y ≤ U(x), x ∈ [a, b]} such that

P(L(x) ≤ F (x) ≤ U(x) for all x ∈ [a, b]) ≥ 1− α.
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Dvoretzky-Kiefer-Wolfowitz inequality
If X1, . . . ,Xn is a rs from a distribution with cdf F , then for any ε > 0 we have

P

(
sup
x∈R
|F̂n(x)− F (x)| ≤ ε

)
≥ 1− 2e−2nε2

.

Exercise:
1 Use the DKW result to construct a (1− α)× 100% confidence band for F .
2 Add the band to the plot with the pointwise CIs.
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Hoeffding’s inequality can give us a weaker inequality resembling the DKW.

Hoeffding’s inequality
Let Y1, . . . ,Yn be independent zero-mean rvs such that Yi ∈ [ai , bi ], i = 1, . . . , n.
Then for any ε > 0 we have

P
( n∑

i=1

Yi ≥ ε
)
≤ exp

(
− 2ε2∑n

i=1(ai − bi )2

)
.

Exercise:
1 For Y ∈ [a, b] with zero mean, show that logEetY ≤ t2(b − a)2/8 for all t.
2 Prove Hoeffding’s inequality.
3 Show that Hoeffding’s gives P(|F̂n(x)− F (x)| ≤ ε) ≥ 1− 2e−2nε2

for each x .
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Kolmogorov-Smirnov-Donsker
If X1, . . . ,Xn is a rs from a distribution with continuous cdf F , then

1 √
n sup

x∈R
|F̂n(x)− F (x)| → sup

t∈[0,1]
|B0(t)| in distribution

as n→∞, where B0 is a Brownian bridge.
2

P

(
sup

t∈[0,1]
|B0(t)| ≤ x

)
= 1− 2

∞∑
i=1

(−1)i+1 exp(−2i2x2) for all x ∈ R.

Discuss: How to build confidence bands with above.
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Wiener process or standard Brownian motion
A Wiener process B is a rf in the space C [0, 1] of cont. fns on [0, 1] which satisfies

1 B(0) = 0 with probability 1.
2 B(t) ∼ Normal(0, t), for t ∈ (0, 1].
3 For 0 ≤ t0 ≤ t1 ≤ · · · ≤ tk ≤ 1, the increments

B(t0)− B(0), . . . ,B(tk)− B(tk−1)

are mutually independent.

This is also called standard Brownian motion (SBM).
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Generate an approximation to a standard Brownian motion
For each n ≥ 1, let

Bn(t) =
1√
n

btnc∑
i=1

Zi , Z1, . . . ,Zn
ind∼ Normal(0, 1).

Then Bn converges to B as n→∞ by a functional CLT called Donsker’s Theorem.

Exercise: Generate some (approximate) realizations of SBM and plot them.
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Brownian bridge
A Brownian bridge is the random function in C [0, 1] given by

B0(t) = B(t)− tB(1),

where B is a standard Brownian motion.

The “bridge” begins and ends at 0.

Exercise: Generate some (approximate) realizations of the Brownian bridge.
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Basically,
√
n[F̂n(X(i))− F (X(i))], i = 1, . . . , n, acts like a Br. bridge for large n.
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Exercise:
1 Run a simulation to get the 0.95 quantile of supt∈[0,1] |B0(t)|.
2 Check accuracy using the cdf of supt∈[0,1] |B0(t)|.
3 Compute

√
[log(2/0.05)]/2.

4 Discuss.
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Let X1, . . . ,Xn and Y1, . . . ,Ym be ind. rs with cdfs F and G , resp. Consider

H0: F = G versus H1: F 6= G .

Two-sample Kolmogorov-Smirnov test
If F = G the statistic

Dnm = sup
x∈R
|F̂n(x)− Ĝm(x)|

satisfies

P(
√
mn/(m + n)Dnm ≤ x)→ 1− 2

∞∑
i=1

(−1)i+1e−2i2x2

as n,m→∞.

Compute Dnm as

Dnm = max
1≤i≤n

[i/n − Ĝm(X(i))] ∨ max
1≤j≤m

[j/m − F̂n(Y(j))].
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