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Kernel density estimation

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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The kernel density estimator

Much of this lecture comes from Chapter 1 of the book [2]:
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The kernel density estimator

Let X1, . . . ,Xn be a rs with cdf F .

If F has continuous derivative F ′, then the pdf is f = F ′. So

f (x) = lim
h→0

F (x + h)− F (x − h)

2h
for all x ∈ R.

Rosenblatt estimator
The Rosenblatt estimator of f is given by

f̂n(x) =
F̂n(x + h)− F̂n(x − h)

2h
for all x ∈ R

for some small h > 0.

Exercise: Put this estimator into the form

f̂n(x) =
1
nh

n∑
i=1

K0

(
Xi − x

h

)
.
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The kernel density estimator

Exercise: Check whether the Rosenblatt estimator gives a legitimate pdf.

Kernel density estimator (KDE)
We generalize the Rosenblatt estimator with the KDE , given by

f̂n(x) =
1
nh

n∑
i=1

K

(
Xi − x

h

)
,

where K (·) is the kernel function and h is the bandwidth.

Some examples of kernel functions:

K (u) = (1− |u|) · 1(|u| ≤ 1)

K (u) = 3/4 · (1− u2) · 1(|u| ≤ 1)

K (u) = (2π)−1/2e−u
2/2

Discuss: What assumptions are needed about K (·) for f̂n to be a pdf?
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The kernel density estimator

Assumptions under which the KDE f̂n is a legitimate pdf
(K0) K (u) ≥ 0 for all u ∈ R.

(K1∗)
∫
R
K (u)du = 1.

Exercise: Verify that the kernels on the previous slide satisfy these assumptions.
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The kernel density estimator

Exercise: Generate some data and plot the KDE for different K and h.
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Mean squared error of KDE at a point

Consider MSE f̂n(x0) = b2
n(x0)︸ ︷︷ ︸
bias

+σ2
n(x0)︸ ︷︷ ︸

variance

at a point x0 ∈ R.

Assumptions that allow us to bound the variance
(F1) There exists fmax > 0 such that f (x) ≤ fmax < 0 for all x ∈ R.

(K2)
∫
R
K 2(u)du ≤ κ2 <∞.

Bound for the variance of f̂n(x0)
Under (F1) and (K2) we have

σ2
n(x0) ≤

1
nh
· fmax · κ2

for each x0 ∈ R.

Exercise: Prove the above.
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Mean squared error of KDE at a point

Bounding the bias bn(x0) is more complicated; must consider smoothness of f .

Lipschitz class of functions
For an interval T ⊂ R and L > 0, the Lipschitz class of functions Lipschitz(L) on
T is the set of functions f : T → R satisfying

|f (x)− f (x ′)| ≤ L|x − x ′| for all x , x ′ ∈ T .

Exercise: Check whether f ∈ Lipschitz(L) on R for some L:
1 f (x) = |x |
2 f (x) = sin(x)

3 f (x) = x2

4 f (x) = ex
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Mean squared error of KDE at a point

Let PL(L) denote the set of densities in Lipschitz(L) on R, that is, let

PL(L) =
{
f : f ≥ 0,

∫
R
f (x)dx = 1, and f ∈ Lipschitz(L) on R

}
.
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Mean squared error of KDE at a point

We also need another assumption on the kernel to bound the bias:

(K3∗)
∫
R
|u||K (u)|du ≤ κ1 <∞.

Bound for the bias of f̂n(x0)
Under (K1∗) and (K3∗) and if f ∈ PL(L) then

|bn(x0)| ≤ h · L · κ1

for each x0 ∈ R.

Exercise: Prove the above.
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Mean squared error of KDE at a point

Bound for the MSE of f̂n(x0)
Under (K1∗), (K2), (K3∗), and (F1), and if f ∈ PL(L), we have

MSE f̂n(x0) ≤ h2 · L2 · κ2
1 +

1
nh
· fmax · κ2

for each x0 ∈ R.

Follows from bounds on the bias and variance.

Exercise:
Find the optimal bandwidth hopt (that minimizes the MSE bound)
Give the MSE bound under hopt
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Mean squared error of KDE at a point

We now consider a more general class of smooth functions.

Hölder class of functions
For an interval T ⊂ R, β > 0 an integer, and L > 0, the Hölder class of functions
H(β, L) on T is the set functions f : T → R with ` = β − 1 derivatives such that
f (`) satisfies

|f (`)(x)− f (`)(x ′)| ≤ L|x − x ′| for all x , x ′ ∈ T .

Can have Hölder classes with non-integer β, but we ignore these.

Exercise: Check whether f ∈ H(β, L) for some β, L for
1 f (x) = |x |
2 f (x) = ex

3 f (x) = x21(0 ≤ x < 1/3) + [2x − 2x2 − 1/3]1(1/3 ≤ x < 2/3)
+(1− x)21(2/3 ≤ x < 1)
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Mean squared error of KDE at a point

Let PH(β, L) denote the set of densities in H(β, L) on R, that is, let

PH(β, L) =
{
f : f ≥ 0,

∫
R
f (x)dx = 1, and f ∈ H(β, L) on R

}
.
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Mean squared error of KDE at a point

To accommodate the Hölder class of functions, we need the following definition:

Kernel of order `
Let ` ≥ 1 be an integer. We call K : R→ R a kernel of order ` if the functions
u 7→ ujK (u), j = 0, 1, . . . , ` are integrable and satisfy∫

R
K (u)du = 1 and

∫
R
ujK (u)du = 0, j = 1, . . . , `.

Exercise: Check whether these are kernels of some order ` ≥ 1:

K (u) = (1/2) · 1(|u| ≤ 1)
K (u) = (1− |u|) · 1(|u| ≤ 1)

K (u) = 3/4 · (1− u2) · 1(|u| ≤ 1)

K (u) = (2π)−1/2e−u
2/2
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Mean squared error of KDE at a point

We now analyze the bias when f ∈ PH(β, L). But first:

Updated assumptions for bounding the bias—when f ∈ PH(β, L)

(K1) K is a kernel of order `

(K3)
∫
R
|u|β |K (u)|du ≤ κβ <∞

Bound for the bias of f̂n(x0)
Under (K1) and (K3) and if f ∈ PH(β, L), we have

|bn(x0)| ≤ hβ · L · κβ
`!

for each x0 ∈ R.

Exercise: Prove the above.
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Mean squared error of KDE at a point

Bound for the MSE of f̂n(x0)
Under (K1), (K2), (K3), and (F1), and if f ∈ PH(β, L), we have

MSE f̂n(x0) ≤ h2β ·
(
L · κβ
`!

)2

+
1
nh
· fmax · κ2

for each x0 ∈ R.

Follows from bounds on the bias and variance.

Exercise: Show that the optimal bound in the above result is of the form

MSE f̂n(x0) ≤ C · n−
2β

2β+1 for all x0 ∈ R.
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Mean squared error of KDE at a point

Kernels of order ` ≥ 2 must take negative values on a set of positive Leb. measure!

Why??

Exercise: Consider the kernel

K (u) =

(
9
8
− 15

8
u2
)

1(|u| ≤ 1).

1 Show that this is a kernel of order 2.
2 Generate some data and use this as the kernel in a KDE. Plot results.
3 Discuss using f̂ +n (x) = max{0, f̂n(x)}.
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Mean squared error of KDE at a point
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Mean squared error of KDE at a point

Theorem 1: Uniform bound for MSE f̂n(x) over x ∈ R, f ∈ PH(β, L)

Under (K1), (K2), (K3), if h = αn−
1

2β+1 for some α > 0, then for all n ≥ 1,

sup
f∈PH(β,L)

sup
x∈R

Ef [(f̂n(x)− f (x))2] ≤ C · n−
2β

2β+1 ,

where C > 0 is a constant depending only on β, L, α, and the kernel K .

Where is (F1)? Can show ∃ fmax <∞ s.t. supf∈PH(β,L) supx∈R f (x) ≤ fmax.

The n−
2β

2β+1 is the rate of convergence of f̂n(x).

Discuss:
1 Can there be an estimator with a better rate of convergence?
2 How does the smoothness of the function class affect the rate?

Karl Gregory (U. of South Carolina) STAT 824 sp 2025 Lec 02 slides 21 / 30



Mean integrated squared error of KDE

The mean integrated squared error (MISE) of f̂n is defined as

MISE f̂n = E
∫
R
[f̂n(x)− f (x)]2dx =

∫
R
b2(x)dx︸ ︷︷ ︸

bias term

+

∫
R
σ2(x)dx︸ ︷︷ ︸

variance term

.

Bound on MISE variance term
Under (K2) we have ∫

R
σ2(x)dx ≤ 1

nh
κ2.

Exercise: Prove the above.
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Mean integrated squared error of KDE

Tsybakov presents a bound on the bias term under the following function class:

Nikol’ski class of functions
For β > 0 an integer, L > 0, the Nikol’ski class of functions N (β, L) is the set of
functions f : R→ R of which the derivs f (`) of order ` = β − 1 exist and satisfy(∫

R
[f (`)(x + t)− f (`)(x)]2dx

)1/2

≤ L|t| for all t ∈ R.

Similar to H(β, L), but enables bounding an L2-norm appearing in the bias term.

Let PN (β, L) denote the set of densities in N (β, L), that is, let

PN (β, L) =
{
f ∈ N (β, L) : f ≥ 0,

∫
R
f (x)dx = 1

}
.
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Mean integrated squared error of KDE

Bound on MISE bias term
Under (K1) and (K3), if f ∈ PN (β, L), then∫

R
b2(x)dx ≤ h2β

(
L · κβ
`!

)2

.

For the proof see pg. 14 of [2].

Putting together the bounds on the bias and variance terms gives:

Bound on MISE

Under (K1), (K2), and (K3), if f ∈ PN (β, L), then

MISE f̂n ≤ h2β
(
L · κβ
`!

)2

+
1
nh
κ2.
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Mean integrated squared error of KDE

We conclude this section with a uniform result over PN (β, L).

Theorem 2: Uniform bound for MISE over f ∈ PN (β, L)

Under (K1), (K2), and (K3), if h = αn−
1

2β+1 for some α > 0, then for all n ≥ 1,

sup
f∈PN (β,L)

Ef

∫
R
[f̂n(x)− f (x)]2dx ≤ C · n−

2β
2β+1 ,

where C > 0 is a constant depending only on β, L, α, and the kernel K .
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Bandwidth selection

The Sheather-Jones bandwidth selection method is based on this result [1]:

Theorem 3: “Usual” asymptotic expansion of MISE f̂n
If K is a kernel of order 1 with

κ2 :=

∫
R
K 2(u)du <∞,

∫
R
u2|K (u)|du <∞, σ2

K :=

∫
R
u2K (u)du <∞,

and if f differentiable on R, f ′ a.c. on R, ‖f ′′‖22 =
∫
R[f

′′
(x)]2dx <∞, then

MISE f̂n =

h4 ·

(
‖f ′′‖2 · σ2

K

2

)2

+
1
nh
· κ2

 (1+ o(1)︸︷︷︸
→0 as h→0

).

Proof on pg. 192 of Tsybakov [2].

SJ propose to plug in an estimate of ‖f ′′‖22. In R: density(x, bw = "SJ")

Exercise: Find optimal bandwidth in terms of σK , κ2, and ‖f ′′‖22.
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Bandwidth selection

Let the leave-one-out crossvalidation estimators of f be given by

f̂n,−i (x) =
1

(n − 1)h

∑
j 6=i

K

(
Xj − x

h

)
, i = 1, . . . , n,

and define the function

CV(h) =
∫
R
f̂ 2
n (x)dx −

2
n

n∑
i=1

f̂n,−i (Xi ).

Then a leave-one-out crossvalidation choice of h is

hCV = argmin
h>0

CV (h).
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Bandwidth selection

CV estimate of MISE

Assume that K : R→ R and f satisfy∫
R
f 2(x)dx <∞ and

∫
R

∫
R

∣∣∣K (z − x

h

) ∣∣∣f (z)dz f (x)dx <∞

for all h > 0. Then
ECV(h) = MISE f̂n −

∫
R
f 2(x)dx .

Exercise: Prove the above result.
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Bandwidth selection
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Bandwidth selection

Simon J Sheather and Michael C Jones.
A reliable data-based bandwidth selection method for kernel density
estimation.
Journal of the Royal Statistical Society: Series B (Methodological),
53(3):683–690, 1991.

Alexandre B Tsybakov.
Introduction to nonparametric estimation.
Springer Science & Business Media, 2008.
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