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Multivariate kernel density estimation

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.
They are not intended to explain or expound on any material.
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Let Xi,...,X, € RY, d > 1, with pdf £ : RY — R.

Multivariate kernel density estimator

A multivariate kernel density estimator for a a pdf f : R? — R takes the form

N

-1 2
fn,H( n|H|1/2 ZK(H / ))7

for some function K : RY — R and positive definite bandwidth matrix H.

For simplicity we focus on the above estimator under H = h?ly, which is given by
f(x) = hdZK (X — x)).
Exercise: Check conditions on K needed to make 7, a valid pdf.
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The multivariate kernel density estimator
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The multivariate kernel density estimator

Example:
@ Generate n = 500 realizations of (X, Y) as follows:

Let U ~ Uniform(0,27) and S € {—1,1} with P(S§ =1) =1/2 with U L S.

Then set R =S - exp(U/2) and let
X =R-cos(U) + &1
Y =R -sin(U) + e,

with e1, 65 % Normal(0, 1).
© Plot data with bivariate KDE

o= o (552 (%5

overlaid with bandwidths h € {1/2,1,2,4,8}, ¢(z) = 1/v2me=%"/2,
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Now work on bounding MSE 7,(xo) = b2(x0) + 02(xo) for xo € R¥.

Assumptions that allow us to bound the variance
(F1) There exists fmax > 0 such that f(x) < fa < 0o for all x € R9.

(K2) /1;4 K?(u)du < K* < oo.

Bound for the variance of #(xo)
Under (F1) and (K2) we have

1
UE(XO) € =—> fmax . "32

for each xp € R€.

Exercise: Prove the above.
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Mean squared error of multivariate KDE at a point

To bound the bias b,(xp) we must consider smoothness of f. But first.. .

Multi-index notation

For a vector of positive integers a = (au, ..., aq) 7, let
o] = a1 4+ -+ + ag, ol =ag!- - ay!
«
X% = x2 ... x% for all x € R? DQ:L
1 d ’ oxy™ - - - 03
(e (0% (0%
x| = [xa]*® - |xq]*
w

Can use multi-index notation to:
@ write down multivariate Taylor expansions

@ define higher-dimensional Hélder classes
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Mean squared error of multivariate KDE at a point

Multivariate Taylor Expansion

Let f : R? — R have partial derivs of order k + 1 on a convex set T, xp,x € T.
Then
F(x) = feok(x) + Rk (x),

where £ «(x) is the kth order Taylor expansion of f at xp, given by
D« f(Xo) @
Frok(X) = Z T(X—Xo) )
o<k
and where the remainder (in Lagrangian form) is

R 1(x) = Z D¥f((1 — 7)xo + 7x)

= | (x — x0)® for some 7 € (0,1).
al

|o|=k+1

Exercise: Give 1st-ord Taylor expansion of f(x) = x?e** + xyx3 at xo = (1,1,1).
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Mean squared error of multivariate KDE at a point

Holder class of functions in d-dimensions

For T C RY, 3> 0 an integer, and L > 0, the Hélder class of functions H(B, L)
on T is the set functions f : T — R for which all partial derivatives of order up to
{ = —1 exist and

|IDYf(x) — D*f(x')] < L||jx — X'||]2 for all x,x' € T

for all vectors a of positive integers such that |a| = .

Let P,(3, L) denote the set of densities in (3, L) on R, that is, let

P (B, L) = {f: f> 0,/ f(x)dx =1, and f € H(B, L) on ]Rd}.
R
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Mean squared error of multivariate KDE at a point

To accommodate the Halder class of functions in RY, we need:

d-dimensional Kernel of order ¢

Let £ > 1 be an integer. We call K : R — R a d-dimensional kernel of order ¢ if
the functions u — u*K(u), || =0,1,...,¢ are integrable and satisfy

/K(u)duzl and /uO‘K(u)duzo, ol =1,...,¢.
RY RY

Exercise: Check the order of the kernel K : R? — R given by K(u) = ¢(u1)d(u2).
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Mean squared error of multivariate KDE at a point

We now analyze the bias when f € Pg (83, L). We need two assumptions:

Assumptions for bounding the bias when f € Pg (8, L)
(K1) K is a d-dimensional kernel of order ¢

(K3) / lull2]u]“|K(u)|du < oo for all |a] = £
R

Bound for the bias of £,(x)
Under (K1) and (K3) and if f € P$,(8, L), we have

|ba(x0)| < B - C

for each xg € R, where C > 0 is a constant.

Exercise: Prove the above.
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Mean squared error of multivariate KDE at a point

Bound for the MSE of #,(xo)
Under (K1), (K2), (K3), and (F1), and if f € P§,(3, L), we have

A 1
MSE fu(x0) < B - C2 4 — - frnae - 2

for each x9 € R.

Follows from bounds on the bias and variance.
Exercise: Show that the optimal bound in the above result is of the form

MSE #,(x0) < C - N~ for all xo € RY.

Karl Gregory (U. of South Carolina) STAT 824 sp 2025 Lec 03 slides 12 /17



The curse of dimensionality

Discuss: What is the effect of increasing the dimension d on MSE #,(x0)?

- : . _\A . :
_ DIMENSIONUS ENORMOUS!

The curse of dimensionality:

@ Points get very spread out in high-dimensional space.
@ Variance explodes (or required sample size to keep variance fixed explodes).

Karl Gregory (U. of South Carolina) STAT 824 sp 2025 Lec 03 slides 13 / 17



The curse of dimensionality

Bound on MSE #,(xo) when 3 = 2:

d 1 2 4 8
Optimal rate n4/5 46 48 412
To get same MSE bound as n ni’/s nf/s n}z/‘r’
when d = 1 under m;
n; = 100 100 251 1,585 63,096

o = = E A
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The curse of dimensionality

The following, from [1], explores the far-between-ness of points in high-D space:

Exercise: Let X, X1, ..., X, = Uniform([0,1]%). Show that

E { min || X — X,-||2} >
1<i<n

. dil [F(d/2+1)1/d} 1

NG nl/d

Hint: Use fact that a ball in R with radius t has volume

2d/2 y
rd/2+1)
to show that
2d/2 ;
P in I X=Xl <t|]<n ————t°.
<1r<“,-'2n I l2 < > =" T2+ 1)
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The curse of dimensionality
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The curse of dimensionality

Liszlé Gyorfi, Michael Kohler, Adam Krzyzak, and Harro Walk

Springer Science & Business Media, 2006.

o = = E A
Karl Gregory (U. of South Carolina) STAT 824 sp 2025 Lec 03 slides

A distribution-free theory of nonparametric regression.
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