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Multivariate kernel density estimation

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.

They are not intended to explain or expound on any material.
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The multivariate kernel density estimator

Let X1, . . . ,Xn ∈ Rd , d ≥ 1, with pdf f : Rd → R.

Multivariate kernel density estimator
A multivariate kernel density estimator for a a pdf f : Rd → R takes the form

f̂n,H(x) =
1

n|H|1/2
n∑

i=1

K (H−1/2(Xi − x)),

for some function K : Rd → R and positive definite bandwidth matrix H.

For simplicity we focus on the above estimator under H = h2Id , which is given by

f̂n(x) =
1

nhd

n∑
i=1

K (h−1(Xi − x)).

Exercise: Check conditions on K needed to make f̂n a valid pdf.
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The multivariate kernel density estimator
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The multivariate kernel density estimator

Example:
1 Generate n = 500 realizations of (X ,Y ) as follows:

Let U ∼ Uniform(0, 2π) and S ∈ {−1, 1} with P(S = 1) = 1/2 with U ⊥⊥ S .
Then set R = S · exp(U/2) and let

X = R · cos(U) + ε1

Y = R · sin(U) + ε2,

with ε1, ε2
ind∼ Normal(0, 1).

2 Plot data with bivariate KDE

f̂n(x , y) =
1
nh2

n∑
i=1

φ

(
Xi − x

h

)
φ

(
Yi − y

h

)

overlaid with bandwidths h ∈ {1/2, 1, 2, 4, 8}, φ(z) = 1/
√
2πe−z

2/2.
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Mean squared error of multivariate KDE at a point

Now work on bounding MSE f̂n(x0) = b2
n(x0) + σ2

n(x0) for x0 ∈ Rd .

Assumptions that allow us to bound the variance
(F1) There exists fmax > 0 such that f (x) ≤ fmax <∞ for all x ∈ Rd .

(K2)
∫
Rd

K 2(u)du ≤ κ2 <∞.

Bound for the variance of f̂n(x0)
Under (F1) and (K2) we have

σ2
n(x0) ≤ 1

nhd
· fmax · κ2

for each x0 ∈ Rd .

Exercise: Prove the above.
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Mean squared error of multivariate KDE at a point

To bound the bias bn(x0) we must consider smoothness of f . But first. . .

Multi-index notation
For a vector of positive integers α = (α1, . . . , αd)T , let

|α| = α1 + · · ·+ αd , α! = α1! · · ·αd !

xα = xα1
1 · · · x

αd

d for all x ∈ Rd , Dα =
∂|α|

∂xα1
1 · · · ∂x

αd

d

|x |α = |x1|α1 · · · |xd |αd

Can use multi-index notation to:
write down multivariate Taylor expansions
define higher-dimensional Hölder classes
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Mean squared error of multivariate KDE at a point

Multivariate Taylor Expansion
Let f : Rd → R have partial derivs of order k + 1 on a convex set T , x0, x ∈ T .
Then

f (x) = fx0,k(x) + Rx0,k(x),

where fx0,k(x) is the kth order Taylor expansion of f at x0, given by

fx0,k(x) =
∑
|α|≤k

Dαf (x0)

α!
(x − x0)α,

and where the remainder (in Lagrangian form) is

Rx0,k(x) =
∑
|α|=k+1

Dαf ((1− τ)x0 + τx)

α!
(x − x0)α for some τ ∈ (0, 1).

Exercise: Give 1st-ord Taylor expansion of f (x) = x2
1 e

x2 + x1x3 at x0 = (1, 1, 1)T .
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Mean squared error of multivariate KDE at a point

Hölder class of functions in d-dimensions
For T ⊂ Rd , β > 0 an integer, and L > 0, the Hölder class of functions H(β, L)
on T is the set functions f : T → R for which all partial derivatives of order up to
` = β − 1 exist and

|Dαf (x)− Dαf (x ′)| ≤ L‖x − x ′‖2 for all x , x ′ ∈ T

for all vectors α of positive integers such that |α| = `.

Let Pd
H(β, L) denote the set of densities in H(β, L) on Rd , that is, let

Pd
H(β, L) =

{
f : f ≥ 0,

∫
Rd

f (x)dx = 1, and f ∈ H(β, L) on Rd

}
.
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Mean squared error of multivariate KDE at a point

To accommodate the Hölder class of functions in Rd , we need:

d-dimensional Kernel of order `
Let ` ≥ 1 be an integer. We call K : Rd → R a d-dimensional kernel of order ` if
the functions u 7→ uαK (u), |α| = 0, 1, . . . , ` are integrable and satisfy∫

Rd

K (u)du = 1 and
∫
Rd

uαK (u)du = 0, |α| = 1, . . . , `.

Exercise: Check the order of the kernel K : R2 → R given by K (u) = φ(u1)φ(u2).
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Mean squared error of multivariate KDE at a point

We now analyze the bias when f ∈ Pd
H(β, L). We need two assumptions:

Assumptions for bounding the bias when f ∈ Pd
H(β, L)

(K1) K is a d-dimensional kernel of order `

(K3)
∫
Rd

‖u‖2|u|α|K (u)|du <∞ for all |α| = `

Bound for the bias of f̂n(x0)
Under (K1) and (K3) and if f ∈ Pd

H(β, L), we have

|bn(x0)| ≤ hβ · C

for each x0 ∈ R, where C > 0 is a constant.

Exercise: Prove the above.
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Mean squared error of multivariate KDE at a point

Bound for the MSE of f̂n(x0)
Under (K1), (K2), (K3), and (F1), and if f ∈ Pd

H(β, L), we have

MSE f̂n(x0) ≤ h2β · C 2 +
1

nhd
· fmax · κ2

for each x0 ∈ R.

Follows from bounds on the bias and variance.

Exercise: Show that the optimal bound in the above result is of the form

MSE f̂n(x0) ≤ C · n−
2β

2β+d for all x0 ∈ Rd .
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The curse of dimensionality

Discuss: What is the effect of increasing the dimension d on MSE f̂n(x0)?

The curse of dimensionality:
Points get very spread out in high-dimensional space.
Variance explodes (or required sample size to keep variance fixed explodes).
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The curse of dimensionality

Bound on MSE f̂n(x0) when β = 2:

d 1 2 4 8

Optimal rate n−4/5 n−4/6 n−4/8 n−4/12

To get same MSE bound as n1 n
6/5
1 n

8/5
1 n

12/5
1

when d = 1 under n1

n1 = 100 100 251 1,585 63,096
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The curse of dimensionality

The following, from [1], explores the far-between-ness of points in high-D space:

Exercise: Let X ,X1, . . . ,Xn
ind∼ Uniform([0, 1]d). Show that

E
[

min
1≤i≤n

‖X − Xi‖2
]
≥ d

d + 1

[
Γ(d/2 + 1)1/d

√
π

]
1

n1/d .

Hint: Use fact that a ball in Rd with radius t has volume

πd/2

Γ(d/2 + 1)
td

to show that

P

(
min

1≤i≤n
‖X − Xi‖2 ≤ t

)
≤ n · πd/2

Γ(d/2 + 1)
td .
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The curse of dimensionality
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The curse of dimensionality

László Györfi, Michael Kohler, Adam Krzyzak, and Harro Walk.
A distribution-free theory of nonparametric regression.
Springer Science & Business Media, 2006.
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