STAT 824 sp 2025 Lec 05 slides

Nonparametric regression: Splines

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.
They are not intended to explain or expound on any material.

Karl Gregory (U. of South Carolina) STAT 824 sp 2025 Lec 05 slides 1/ 58



Additive model Nadaraya-Watson
estimator

Curse of dimensionality
MSE bound over
Lipschitz functions

Spline/kernel Nonparametric
smoothing connection . 4
Estimating the error
term variance

R "

\\ ‘Qa Vi

Least-squares and

o
< %Q penalized splines " &N \ TR

S I - ; . Lo
¥ N - & \ Pointwise

s | . confidence intervals
MSE bound over \ % J ™ -

Holder functions
A

Local polynomial
estimators

Karl Gregory (U. of South Carolina)



Least-squares nonparametric regression estimators

Let (X1, Y1), ..., (Xn, Yn) be indep. realizations of (X, Y) € [0, 1] x R, where

Y =m(X)+e, forsomem:][0,1] = R,

where ¢ is independent of X with Ec = 0 and Ec? = ¢2.
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X
The function plotted is m(x) = 5x - sin(27(1 + x)?) — (5/2)x.
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Least-squares nonparametric regression estimators

Sieve estimation

Given a set of building-block functions by, ..., by, : [0,1] — R, assume
dy
m(x) = Zakbk(x) for some aq,...,0q,.
k=1
Estimate a, ..., ag, with least squares to get i, (x) = EZ":I Ay bi(x).

@ As n — o0, let d, — oo so that the approximation improves.
@ Quality of approximation depends on

© the type and number of basis functions.
© the smoothness of the true function m.

@ There will always be some approximation bias.
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Least-squares nonparametric regression estimators

A non-parametric least squares estimator
For a set of basis functions by, ..., by, : [0,1] = R, let

Gn={g : g(x) = S, abi(x), 01, ..., aq, € R}.

Given (X1, Y1), ..., (Xn, Yn), the least squares estimator of m in B, is given by

M, = argmin Z[Y, — g(X)>
gev 4

Exercise: Let Y = (Y1,...,Y,)" and define the matrix

B= (bk(Xi))lgign,lgkgdn :

Show that M1,(x) = bl &, where

&= (B"B) 'BTY and by, =(by(x),...,ba(x)"-
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Cosine basis

The cosine basis on [0, 1] is the set of functions
bl(X) = 1,

b = V2 cos(2m(k — 1)x),

for k=2,3,...

o = = E A
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Least-squares nonparametric regression estimators

Cosine basis with 2 frequencies

Cosine basis with 3 frequencies
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Least-squares nonparametric regression estimators

With cosine basis with 2 frequencies

With cosine basis with 3 frequencies
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Fourier basis

The Fourier basis on [0, 1] is the set of functions given by
bi(x) =1,
forj=1,2,...

by;j(x) = V2 cos(2mjx),

boj1(x) = V2sin(2mjx)

o = = E A
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Least-squares nonparametric regression estimators
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Least-squares nonparametric regression estimators

With Fourier basis with 2 frequencies

With Fourier basis with 3 frequencies
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Least-squares nonparametric regression estimators

Legendre polynomial basis

Given a set of knots 0 = g < u; < --- < ux = 1, and an order r, set

b(jfl)(r+1)+5+1(x) =P (2(%) - 1)

forj=1,...,Kand £=0,1,...,r, where

1 d
o(2) = s g~

One obtains
Po) =1, Pi(s)=z Piz)= 5032~ 1), Ps(e) = (52 ~32).

One can make the number of knots K grow as n — oc.
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Least-squares nonparametric regression estimators

Legendre basis of order 0

Legendre basis of order 1
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Least-squares nonparametric regression estimators

With Legendre basis of order 0

With Legendre basis of order 1
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Cubic B-spline basis

Will define shortly. . . look at some pictures first.

o & - = DA
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Least-squares nonparametric regression estimators

B-splines of order 3 based on 2 intervals

B-splines of order 3 based on 4 intervals
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Least-squares nonparametric regression estimators

With cubic B-splines based on 2 intervals

With cubic B-splines based on 4 intervals
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B-splines as basis functions

B-splines: Cox-deBoor recursion formula

For a non-decreasing set of knots 0 = ug < u; < --- < wg =1, let

1 Uk <u< Ugi1
Ny o(u) = ’ — . fork=0,..., K—-1
o(u) 0, otherwise L ’
and
u— Uk Uktr+1 — U
Nk,f(u) = Nk,r—l(u) + r—Nk_H_),—_l(u)
Ugtr — Uk Uktr41 — Uk41

for k=0,...,K — r — 1. These functions are called B-splines.

Can compute row vector N,(x) = (No (x), ..., Nk—r—1,(x)), x € [0,1], with
splineDesign(knots = u, x = x, ord = r + 1)

Require splines package.
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B-splines as basis functions

The Cox-deBoor recursion has a structure like this:
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B-splines as b:

B-splines of order r = 0

s functions

B-splines of orderr = 1
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B-splines as basis functions

To handle boundary issues, a convention is to include the end knots r + 1 times:

O:u_r:...:u0<u1<...<uK:...:uK+r

This results in K + r basis functions when [0, 1] is subdivided into K intervals.

Exercise: Make beautiful plots of B-spline functions of order r = 0,1,2,3 in R

@ with equally spaced knots.
© with unequally spaced knots.
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B-splines as b:

B-splines of order 0 based on 10 intervals

s functions

B-splines of order 1 based on 10 intervals
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B-splines as b:

B-splines of order 0 based on 10 intervals

B-splines of order 1 based on 10 intervals
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B-splines as basis functions

Replicating boundary knots r times results in d, = K, + r basis functions.

For Xi,...,X,, we can obtain the n x d, design matrix B with
splineDesign(knots = u, x = X, ord = r + 1),

where X is a vector containing the values Xy, ..., X,.

Note that (with the replicated boundary knots) the rows of B always sum to 1.
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B-splines as basis functions

Exercise:
@ For n =200, generate data Y; = m(X;) + &; with
> Xi,..., X, nd Uniform(0, 1), indep. of €1, ...,&n n Normal(0, 1)
» m(x) = 5x - sin(2m(1 + x)?) — (5/2)x
Q Plot n’ﬁf,pl under K, = 10 for r = 0,1, 2, 3 with
» knots equally spaced in [0, 1]
» knots at equally space quantiles of Xi,..., X,

© Try different values of K,,.
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B-splines as basis functions

With B-splines of order r =0

With B-splines of order r = 1
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B-splines as basis functions

With B-splines of order r =0

With B-splines of order r = 1
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B-splines as basis functions

With B-splines of order r =0

With B-splines of order r = 1
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B-splines as basis functions

With B-splines of order r =0

With B-splines of order r = 1
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Splines and rates of convergence for least squares splines

Splines: see Stone (1985) [4]

For K, > 0 an integer let Iy = [(k — 1)/Kp, k/K,) for k=1,...,K,—1 and
Ink, = [(Kn, — 1)/Kp, 1]. Then for r > 1, define the set of functions

m is a polynomial of degree r or less on
Mp,=<m:[0,1] = R: each interval h,...,lk,, and mis r — 1 times
continuously differentiable on [0, 1]

Moreover, let

Mpo={m:[0,1] = R : mis piecewise constant on I, ..., lk,}

e Fnsin M, 1, M,2, and M, 3 are called linear, quadratic, and cubic splines.
@ Values j/K,, j=0,..., K, are called knots. Can choose knots differently.

@ B-splines of order r defined over the same knots form a basis for M, ,.

@ Functions in these spaces can nicely approximate functions in Holder classes.
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For a function g : T — R, we write ||g]|cc = sup,c7 |g(x)|.

Key result from deBoor (1968) [1]

For each m € H(B, L) on [0, 1], there exists a function mf,'?l € M, ,, where
r > B — 1 such that
lm — miPllee < C- K7

for some constant C > 0.

Idea is to let K,, — oo as n — oo, so that this approximation error goes to zero.

Exercise: For m € Lipschitz(L) on [0, 1], show that 3 mf,’f(l) € M0 such that

s L
sup |m(x) — mnf)(l)(x)| < K
x€[0,1] n
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Splines and rates of convergence for least squares splines

We now define the order r least-squares spIines estimator of m as

ASP . = argmin Y — g(X)?
aain 0%~ 600

Bound on MSE 1P (xo)
If me H(B,L) on [0, 1], then for r > 3 — 1, we have

Ky
MSE Pl (x0) < C - <K,,2/3 + 7)

for all xp € [0, 1] for large enough n, provided (C1), (C2), and (C3) hold.

We will study the conditions (C1), (C2), and (C3) later on.

Exercise:
@ Find the value of K, which minimizes the MSE bound.
© Give the minimum bound over choices of K,.
© Anything interesting about this?

Karl Gregory (U. of South Carolina) STAT 824 sp 2025 Lec 05 slides 32 / 58



Sketch of proof of mean squared error bound

Conditions for bounding MSE i1} (xo); see Zhou (1998) [7]
Let m € H(B,L) on [0,1] and let m$P) € M, satisfy |m — mPl|lo < C- K 7.

Let Xi,..., X, € [0,1] be deterministic such that for large enough n,

(C1) Kyt -1 < Amin (n7'BTB) < Amax (n7'B7B) < G - K
)| (87|

C3) |n'BT(m—mP)|| < G-K 7,

<G-K

where
m = (m(X1),...,m(X,))" and mf{’: = (mf,‘?L(Xl), e m,sqf’L(X,,))T.
Exercise:

© Use above to get bounds on the bias and variance of M) (xo).
@ Consider (C1), (C2), and (C3) in the case of 3 =1, r = 0.
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Penalized splines

Let (X1, Y1), ..., (Xn, Yn) be indep. realizations of (X, Y) € [0,1] x R, where
Y = m(X) +e¢,

for some m: [0,1] — R,
where ¢ is independent of X with Ec =0 and Ec? = ¢

2

o = = E A
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Penalized splines

Sobolev class and periodic Sobolev class

For 3 a positive integer and L > 0, define the Sobolev class of functions as

W(B, L) = {m 0.1 >R: mP=1) is absolutely continuous }

and fol(m(ﬁ)(x))2dx <L?
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Penalized splines

Smoothing spline estimator

The estimator

sspl = argmin Z[Y g(Xi ]2_,_)\/ (g(Z)

gEW(2,L) 4

for A > 0 is called the smoothing spline estimator of m.

How do we search among all functions belonging to W,?
Beautiful result: /"' is a natural cubic spline with knots u; = X;, i =1,...,n.
Natural cubic splines are cubic splines constrained to be linear beyond end knots.

Can bound MSE by C - n™*/5 when \ = c - n*/5. See Grace Wahba's book, [6].

Karl Gregory (U. of South Carolina) STAT 824 sp 2025 Lec 05 slides 36 / 58



Penalized splines

Sets of basis functions for natural cubic splines lack nice properties of B-splines.

Since we love B-splines, we often consider (instead of smoothing splines) this:

Penalized spline estimator

Let M, 3 be the space of cubic splines on the knots
Uugz=us=uU_171=uU <uU <- < UK, = UK,+1 = UK,+2 = UK,+3-
Then

i 1
r/f_’Espl = argmin Z[Y’ = g(X,-)]2 + )\/ [g//(x)]2dx,
gEMn,s i=1 ®

for A > 0 is the penalized spline estimator of m. Nice reference is [2].

Idea is to choose K, very large and then tune wiggliness by choosing \.
When K, is very large, mPsP is practically identical to MissP'.

Exercise: Give a representation of MmP*P!(xq) in matrices given a basis for M, 3.
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Penalized splines

We can obtain the row vector b”(x) = (b{(x), ..., blj(x)) with
splineDesign(knots=knots,x=x,ord=4,derivs=rep(2,K+1))

where knots is the complete set of knots u_3, ..., uky3.
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Penalized splines

B-splines of order 3 based on 10 intervals
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Penalized splines

Computation of Q

For cubic B-splines basis functions by, ..., bg,, d, = K, + 3, based on knots

U_3=uUoo=uU_1=1uUy<u <- < Uk, = UK,+1 = Uk,+2 = Uk,+3, we have

1 K-1
b GaB G = S e ) [ 587 w)bf ks) + B o) ()
k=0

(b (1) = b (ur)) (B (k1) — B (uk))

W[ =

_|_

for each 1 < j, ¢ < d,,.

We can derive the above using the fact that each b} is piecewise linear.

Exercise: Demonstrate fitting the penalized splines estimator.
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Penalized splines
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Connection between penalized splines and kernel smoothing

Note that we may write
(PP (Xy), ..., mPPY(X,))T = SY,

where S = B(B'B + \Q)"!BT, with
= (bZ(Xi))lg;gn,1gegdn and (fo by (x) b” X)dx>

1<ej<d

The n x n matrix S is called a smoother matrix.
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Connection between penalized splines and kernel smoothing

# set number of knots, penality parameter
K <- 10
lam <- .001

# place knots in [0,1], compute design matrix of basis function evaluations

u <- (0:K)/K

urep <- c(rep(0,3),u,rep(1,3)) # replicate boundary knots for cubic splines
B <- spline.des(knots = urep, x = X, ord = 4)$design # X contains x1,...,xn

# obtain 2nd derivatives

ddBu <- spline.des(knots = urep,
X =u,
derivs = rep(2,length(u)),
ord = 4)$design

# compute the matrix Omega
Om <- matrix(NA,K+3,K+3)
for(1l in 1:(K+3))

for(j in 1:(K+3)){

tk <- ddBul[-(X+1),1]

gk <- ddBul-(K+1),j]

tkpl <- ddBu[-1,1]

gkpl <- ddBul[-1,j]

0m[1,j] <- sum((ul-1]-ul-(K+1)1)*((1/2)*(gk*tkpl+gkpl*tk)+(1/3)*(tkpl-tk)*(gkpl-gk)))

}

# Compute smoother matrix
S <- B %*% solve(t(B) %*% B + lam * Om) %*% t(B)
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Connection between penalized splines and kernel smoothing

Linear estimator and smoother matrix

A linear estimator is any estimator i1, of the form

Mn(x) = Y1 Whi(x)Y; for some weights  Wp1(x), ..., Wyn(x).

The smoother matrix associated with i, is the matrix S = (W,i(Xi/));<; i<

Exercise: Plot some rows of a penalized spline smoother matrix S. Discuss.
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Connection between penalized splines and kernel smoothing

Penalized spline fit Weights for fitted values i = 20, 100, 160 Silverman Kernel
~ g
IS
© -
@
o - S 4
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8
@ A s <
<
o -
<~ [S]
I
N o~ -
S 4
© o
o
s 4
S
o | o -
I
T T T T T T T T T T T T T T T T T T
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Connection between penalized splines and kernel smoothing

Silverman’s kernel, [3]

For Xi, ..., X, having the density f on [0, 1], the smoothing spline estimator is
asymptotically equivalent to N-W under K and local bandwidth h(x) given by

K(s) = e/ sin(lul/Va+7/4) and  h(x) = (n~A/F))2

The previous slide shows a plot of the Silverman kernel function.

Exercise: Make some plots comparing the rows of the smoother matrices
@ of a penalized spline estimator.
© of the N-W estimator under Silverman’s kernel with bandwidth h = (\/n)*/4.

For the exercise, generate Xi,..., X, e Uniform(0, 1).
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Connection between penalized splines and kernel smoothing

N-W under Silverman kernel Some rows of the smoother matrix
N
N —
o
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o 4
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T T T T T T T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
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Connection between penalized splines and kernel smoothing

Consider the eigendecomposition of the smoother matrix

S=UAUT, UU" =U"U=1,, A=diag(\s,...,\n),
where A1 > X2 > ...\, > 0 are the eigenvalues.
We see that the vector of fitted values can be written as

(mPPY(Xy), ..., mPP(X,))T =SY = UA(UTU)TUTY.
Discuss: Can we learn anything from this?

Exercise: Inspect eigenvectors/eigenvalues of the smoother matrices
Q@ S=B’(B'B)"'B"
©@ S=B'(B'B+ Q)" !BT

Make plots and discuss.
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ed splines and kernel smoothing

First 8 eigenvectors of smoothing matrix
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Prove: If Bd full-rank, B(BTB) BT has exactly d nonzero eigenvals, all
nXx
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Connection between penalized splines and kernel smoothing

Since rﬁ,BSP' is a linear estimator, we have
CV.(\ 1 . \Y ~ pspl X 2 1 ! YI B rf,\.'gspl(xi) ?
n()——Z( i_mn,_,'( D)) __Z{l——S,,} )

: n-<
i=1 i=1

where S;; is the element i on the diagonal of the smoother matrix S.
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Connection between penalized splines and kernel smoothing
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Suppose X; = i/n, i =1,...,n, for now, and let p = (m(Xy),...,m(X,))".

Trend filtering estimator (good reference is Tibshirani's paper, [5])
The trend filtering estimator of y is given by

o= argmin ||Y — u||§ + /\||D(k+1)u||17
uckn

wlhare -1 1 0 ... 0O
0 -1 1 . 00

D) —
0O 00 ... -1 1

and DK+ = DA PK) |k > 1, adjusting the dimension of D) as needed.

To estimate m at any x € [0, 1], we can just linearly interpolate .
Accommodate unequally spaced inputs with a modification to D(**1)_ See [5].

1, AID@u||y, AID®)ul|1, and A||D®ul|;

Exercise: Study the penalties \[|[D(*)u
and consider their effects on fi.
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Trend filtering

The following is known as a generalized lasso minimization problem:

B= e = XB|3 + AlIDB1.-

It can be solved with the genlasso package.

Exercise: Fit the trend filtering estimator on some data for k = 0,1,2,3 and plot.
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TF (order 1) with df = 2 TF (order 1) with df = 29
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TF (order 2) with df =3

TF (order 2) with df =8
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TF (order 4) with df = 4

TF (order 4) with df = 15
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Trend filtering
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