STAT 824 sp 2025 Lec 06 slides

Additive model for nonparametric multiple regression

Karl Gregory

University of South Carolina

These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.
They are not intended to explain or expound on any material.
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Let (X1, Y1), ..., (Xn, Ya) be indep. realizations of (X, Y) € [0,1]” x R, where
Y =m(X)+¢e, forsomem:][0,1]° — R,

where ¢ is independent of X with Ec = 0 and Ec? = o2.

Multivariate Nadaraya-Watson estimator

A multivariate version of the Nadaraya-Watson estimator is given by

ANW(X) _ 27:1 YlK(h_l(Xl — X))
> K(h=H(X; — X))

for some kernel function K : RP — R and bandwidth A > 0.

for all x € [0,1]%,

Kernel often like K(u) = Hf:1 G(uj) where G a univariate kernel like

G()=6(z) o G(z)= 21— 2)(l2 < 1).
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Nadaraya-Watson estimator in multiple dimensions

NW( )

Consider the variance Var m, "V (xg). We make the following assumptions.

(K1) Let K(u) < Kmax < 00 ¥ u € RP.
(D1) Let Xq,...,X, € [0,1]” be deterministic such that for some ng > 0

0<e <4 i KX —x) <t

0<a< i Kh(Xi—x) <t

for some cy, ¢y, for all x € [0, 1]P, for all n > ng.

Bounds on Var mW(x,)

Under (K1) and (D1), for all n > ng, we have
o2 2

1
Var mW(xo) € < i o, % - C2—C2> for all  xo € [0, 1]°.
i

Exercise: Prove the above and interpret.
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Nadaraya-Watson estimator in multiple dimensions

We could also consider local polynomial estimators in the multivariate setting.

Local linear multivariate regression estimator

A multivariate local linear estimator M P1(x) of m(x) is given by o(x), where

(60, 61)(x) —eaer%ngle%pZ(Y — 60— 01 (Xi — x))*K(h™(Xi — x)).

This is also subject to the curse of dimensionality.
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The additive model

A way to mitigate the curse of dimensionality is by assuming additivity.

The additivity assumption is that m : [0, 1] — R may be written
m(x) = my(x1) + -+ + mp(xp)

for all x € [0, 1] for some functions my,..., m, : [0,1] — R.

Stone (1985) argued additive functions sufficient for many applications [5].

Additive model
Let (X1, Y1), ..., (Xn, Yn) be indep. realizations of (X, Y) € [0, 1]” x R, where

Y =p+m(X1)+ -+ mp(X,) +e, forsome my,...,m,:[0,1] =R,

where ¢ is independent of X with Ec = 0 and Ec? = ¢2.

Discuss: Is the additive model identifiable? Examples.
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The additive model

|dentifiability condition for additive model

For the sake of identifiability we will assume, without loss of generality, that

Em;j(Xj) =0 foreach j=1,...,p.

We will make our estimators satisfy the identifiability condition empirically, i.e.
n=t3T  mi(X)=0forj=1,...,p.

for any estimators i, . .., M.

We will always estimate . with Y.

From now on, assume p = 0 and that Y3, ..., Y, are centered, so our model is just

Y =m(X)+ -+ mp(Xp) +e
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The additive model

There are multitudes of ways to estimate my, ..., m,. One is this:

A least-squares splines estimator for the additive model

. 0 A spl A -
Least-squares spline estimators 3", ..., M of my, ..., m, may be defined as
spl | n P 2
s aspl) — ' D e
(', ') = argmin S0 Vi = 320 g0%)]
gjeM,,j

where for j=1,...,p,
./\;tnj = span{l_)jl, Anag Bjd}, with Bj/(X) = j/(X) —n1 27:1 bj/(X,’j),

for I=1,...,d, where bj1, ..., bjq are cubic B-spline basis functions.

| have defaulted to cubic splines (we can use splines of other orders).

Exercise:

© Verify that each rﬁjs-p' will satisfy n=2 37 | rﬁjs.p'(X,-j) =0.
© Write the objective function in matrices. Give normal equations.
© Check whether Bj, = (bjo(Xj)) has full rank.

1<i<n,1<¢<d
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The additive model

For Bn = [Bnla e B,,p] with B"j = (Ejk(Xij))lgign,lngdy the solution to

(B/B,)a=B]Y

is not unique, because the By, ..., B, do not have full-column rank—due to:
The B-splines have the property that Zzzl bje(x) = 1 for all x € [0,1]. J
One fix is to discard the first basis function by, ..., by for each component. ..

lllustrate: Write up some code for fitting LS splines in the additive model.
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The additive model

The bs () function with intercept = FALSE removes the first basis function:

splineDesign(...) bs(...,intercept = TRUE) bs(...,intercept = FALSE)
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The additive model

Least-squares splines estimator (directly computed with basis functions centered, 1 removed)
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By_1=(1-P_1)B;

Exercise: Let B = [B1,B_;] have full column rank and let
and

P,=B_;(B";B_;)"'B_;

© Show that
B/B; B/B_; &y |
B™,B; B’,B_; &g |

if and only if &; = (BlT\_lBl\,l)_lBl\,lY.

BYY
BT,Y

Q If Cov(Y) = o2I, give Var(b{ &1).

Discuss: The purpose of this exercise.
13 / 20
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The additive model

We can also penalize the wiggliness of the fitted functions:

A penalized splines estimator for the additive model

| . .
Penalized spline estimators mP*P', ..., mPP! of my, ..., m, may be defined as
1 s p ’ 5 e

(..., ) = argmin 327, [Yf—z;;l&(xw} +AYL fole ()P,
g EM,)

for some A > 0, where for j =1,...,p,

Mnj = span{t_)jl, soog Ejd}, with Ej/(X) = j/(X) —n! Z:?:l bj/(X,'j),

for I=1,...,d, where bji, ..., bjg are cubic B-spline basis functions.

Exercise:
@ Write the objective function in matrices. Give normal equations. Issues?
© Show and run sample R code for fitting the penalized splines estimator.
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https://people.stat.sc.edu/gregorkb/STAT_824_sp_2025/STAT_824_pspl_code.R

The additive model

Penalized splines estimator (directly computed with basis functions centered, 1 removed)
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Backfitting is a fast and simple way to compute estimators in the additive model.

It also spares us from the numerical issues encountered in the last few slides.

The components of the model Y = Z}’:l mj(X;) + € have the interpretation
m;(Xj) = E[YX]] = 2y Elme(Xi) |1 X]]

forj=1,...,p.

Now, letting I1; represent conditional expectation given X, we have
mi =T;Y =3 i Mimy for j=1,....p (with mi := my(X&)).

We can write this system of equations as

/ ﬂ1 |_|1 mq |_|1Y
|_|2 / |_|2 my |_|2Y
N, M, ... [ m, M,y
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The backfitting algorithm solves an empirical version

l, S ... S; Ay S.Y
52 In 52 ﬁ12 S2Y
S, S, ... I, M, S,Y

of the system of equations on the previous slide, where
., Sp are smoother matrices associated with univariate smoothers.

o Sl,..
(] I’IT\ll, .
oY =(Yi,....,Y)T

Backfitting algorithm (Gauss—Seidel). See Buja et al. (1989), [1].

.,mp are n x 1 with evaluations of estimators at design points.

.,m, = 0. Then iterate: For j=1,...,p

Initialize: g, ..
Q m; — S;(Y -2, ;M)
© ;< m; —n~117m; (centering step for identifiability)
until My, ..., M, no longer change.

17 / 29
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To implement the backfitting algorithm, we just need the smoother matrices.

o Least-squares splines: S; = B,;(B}.B,;) "B/,
o Penalized splines: S; = B,;(B]B,; + \Q;) 'B/;
(Note that there is no need to center the basis functions.)

K(h— (X — Xy)) >
22:1 K(h=1(Xy — X)) 1<i<n,1<k<n

o Nadaraya-Watson: S; = (

Exercise: Demonstrate backfitting with penalized splines.
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N-W backfitting estimator
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Exercise: Try backfitting for multiple linear regression,
Y:ﬁ1X1+"'+ﬁpo+€7
with EX; =0 forj=1,...,p.

© What are the smoother matrices S1,...,S, in this context?

© How do you obtain the least-squares estimators /1, ..., Bp from the output?

© Implement on some made-up data.
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Rates of convergence

Now consider the performance of nonparametric estimators in the additive model.

Least-squares splines performance in additive model, Stone (1985), [5]

Suppose m = my + - - - + m,, where m; € H(B,L) for j=1,...,p, and let
rﬁi’f:, ...,AP be n x 1 vectors with the fitted values of the Ieast squares splines
estlmators of order r > [ — 1. Then, provided Xi,..., X, have a “nice”
distribution and K, = an for some o >0, we have

B (S1f - mj3) < Co~ s

for each j =1,..., p, for some constant C > 0 for large enough n.

The my,...,m, are n x 1 with evaluations of the true functions at design points.

We estimate the additive model components at the univariate nonparametric rate!

Discuss: What if the additivity assumption is false?
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Sparse high-dimensional additive model

Stone (1985) treated p as a constant, absorbing it into C. If we track p, we get

Jsr

1. _ 28
E <||mS.P| _ mj||§) < C-p-n 21,
n
So we see that the dimension, i.e. # of covariates, affects estimation.

The sparse additive model

In large-p settings, we often make a sparsity assumption; we assume
s:=|A<p where A={j:m;#0}

This means that some of the functions are equal to zero, giving

Y = EjeA mj(Xj) +e.

The covariates with indices in A are sometimes called the “active” covariates.

Many estimators have been proposed in this setting.
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Sparse high-dimensional additive model

Sparsity via the group lasso. See Huang et al. (2010), [2].

Group lasso estimators M, ..., MY of my,..., m, can be defined as

A d AL L o
JL(X) = Zk:l ajl'-kbjk(x)v i=1...,p,

where &t (aj'rl,...,@J'rd)T, j=1,...,p are given by
AL
(85, 85) = orgmin | - > BuoylB+ A3 ol
Jj=1 j=1

with an = (Ejk(XU))1§;§n71§k§d, j = 1, 200D

v

Can get adaptive lasso estimators m L(x) = Zk 1 Jk Jk( x), j=1,...,p, with
|
(&?Lv"w AL) _argmln ||Y ZB”JaJ||2+)‘AZT : ||aj||2a
o €R? st = 1652
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Sparse high-dimensional additive model

A sparse penalized splines estimator. See Meier et al. (2009), [3].

~ spspl A spspl .
Sparse pen. spline estimators ™", ..., AP of my, ..., m, may be defined as
2
A spspl
(mi"s",... Sps”') = argmin E Y — E g (Xij)
gEMyy i=1

A\ [ g0 + € [ g oo,

for some A > 0,£ > 0, where for j =1,...,

./\;tn_,' = span{Ejl, 5o00g Ejd}, with Ej/(X) = j/(X) — n_l 27:1 bj/(X,j),

for I=1,...,d, where bji, ..., bjq are cubic B-spline basis functions.

Exercise: Show how this can be formulated as a group lasso problem.
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Sparse high-dimensional additive model

We can also impose sparsity by soft-thresholding the backfitting algorithm.

Soft-thresholded backfitting algorithm. Ravikumar et al. (2009), [4]
Initialize: my,..., M, = 0. Then iterate: For j=1,...,p
Q m; « S;(Y -3, ;M)
- ;- ([l = A)/[Ie[la, i [[y]], > A
om-{y i il <
© mj < m; —n11]m; (centering step for identifiability)

until My, ..., M, no longer change.

In the above ||f;||2 denotes the mean of the squared entries of ;.

We can apply this to any linear smoother.
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Sparse high-dimensional additive model
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