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Minimax theory

Karl Gregory
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These slides are an instructional aid; their sole purpose is to display, during the lecture,
definitions, plots, results, etc. which take too much time to write by hand on the blackboard.
They are not intended to explain or expound on any material.
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A nonparametric regression model

Suppose we observe Yi,..., Y, arising as
Yi=m(i/n)+¢e;, i=1,...,n

where m € [([0,1]) and €1, ...,&, nd N(0,02), for some 02 > 0.

In above L5([0,1]) = {g 0,1 > R: [ g(x)2dx < oo}.

Equally spaced design points x; = i/n for i = 1,..., n for convenience.
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We want to connect estimation of m in nonparametric regression to estimation in
the Normal means model:

The Normal means model
Observe 73, ..., Z, from

Z,-:Q,-—i—n_l/zaf,-, i=1,...,n,

where 8 = (01,...,0,) €© CR" &, ..., % N(0,1), and o > 0.

These notes closely follow [1].
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o Let ¢1,92,... :[0,1] = R be a collection of functions such that

/lgo-(x)so-(x)dm{ Loi=
) #1e 0 i),

for all i and j and such that for any function g € L,([0,1])

1
/0 g(x)pj(x)dx =0 Vj < g(x)=0.

@ Then 1, p2,... comprise an orthonormal basis for L»([0,1]).
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e For g € L»([0,1]) we may write
x) =Y 6pi(x)
j=1
where 0; —fo x)pj(x)dx, j=1,2,...

@ Moreover we have fol lg(x)Pdx = EJ 1 Hf, which is called Parseval's identity.
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o
Fourier basis

The Fourier basis on [0, 1] is the collection of functions ¢;(x) =1 and
bai(x) = V2 cos(2mkx)

bors1(x) = V2sin(2mkx)
fork=1,2,...

o = = E A
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@ Assume m € L,([0,1]) and suppose
m(x) = > 0ip(x)
=1

for some 0y,...,0, and orth. p1,..., .

o Consider estimating 61,...,6, based on Yy,..., Y, with

P . .
0,-:;ij(//n), j=1....n
i=1

@ Then set m,(x) = Z};l 9;‘%’()()-
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Exercise: Show that estimating m is approximately like estimating 6y,...,0, in
the Normal means model. Consider estimating each 6; and consider MISE rf,,.
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The Normal means model
Observe 74, ..., Z, from

Z,-:9,-+n_1/20§,-, i=1,...,n,

where 8 = (01,...,0,) €© CR" &, ..., % N(0,1), and o > 0.

We ask how well we can estimate 8 depending on the space ©.
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o Loss (squared error): Represents the cost of estimation error.
L(6,6) =16 —6]>=> (6 — ;)
i=1

@ Risk: The risk is the expected value of the loss.

R(6,0) =EL(§,0) = > E(); — 0,)*.
i=1

@ Minimax risk: The best worst performance of any estimator of 8 € ©.

M(©) = inf sup R(8, ),
6 6co

where the infimum is taken over all estimators.
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o Integrated risk: with respect to a prior 7 is defined as

1.(8) = / R(D,0)dr ().

@ Bayes estimator: under the prior 7 is defined as

0, = argmin/R(é,B)dw(e),
0

o Integrated Bayes risk: The integrated risk of the Bayes estimator

I = 1.(0,) = / R(D..,0)d(6).
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@ For any estimator 6 we may write

sup R(D,0) > / R(D.0)dr()
0cO €]

— / R(6,0)dr(0) — / R(6,0)dn(6)

zlﬂ—/ R(8,6)dx(6),
ec

o Taking the infimum of both sides of the above over all estimators 6 gives

M(©) = I —sup | R(6.0)dr(6).
2 Jor

@ Second term vanishes under a seq. of priors that concentrates on ©.
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Strategy for finding the minimax risk
To find the minimax risk M(©), propose a candidate value M* and then:

@ Find estimator with worst-case risk equal to (or <) M*. Shows M(©) < M*.

@ Find a prior (or a sequence of priors) such that the integrated Bayes risk over
© is equal to (or converges to) M*. Shows M(©) > M*.

Steps 1 and 2 give M(©) = M*.
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Define the ball with radius ¢ centered at the origin

O,(c) = {o cR": 6] < c}.

Two results

In the Normal means model we have the minimax risks

Q@ M(R") =02
. o0?c?
© liminf M(®n(c)) =

Exercise: Work through the proofs of the above.
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To bring out minimax risk results which look like the nonparametric rates of
convergence we have seen, e.g. n=28/(28+1) 'we consider Sobolev functions. . .

Sobolev class and periodic Sobolev class

For 3 a positive integer and L > 0, define the Sobolev class of functions as

W(B,L)z{m:[O,l]%R:

mP=1) is absolutely continuous
and fol(m(ﬁ)(x))2dx <L?

Moreover, define the periodic Sobolev class of functions Whpe (3, L) as

Weer (B, L) = {m € W(B, L) : mD(0) = mI(1) for £ =0,...,5—1}.
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Sobolev ellipsoid
Define the Sobolev ellipsoid ©(f3, c) as

Oson(f, L) = {(91,92,...) > 62 <o and Y 2267 < LZ/WZﬁ},
j=1 j=1

where a; = 0, a3 = aams1 = (2m)?, m=1,2,...

Definition of a1, as, ... equivalent to
5= j'B, j even
J (j—1), Jjodd.
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Result: Fourier basis as a basis for periodic Sobolev functions
We have

Werl B, 1) = {m : [0,1] = Rz m(x) = 3 0j65(x), (61,62, ..) € Oson(B, L) }.

Jj=1

@ So we can construct any periodic Sobolev function from the Fourier basis.

e Estimating m € Wye(3, L) is essentially like estimating 8 € ©sop(53, L) in the
normal Means model.
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What do periodic Sobolev functions look like?

Exercise: Can generate some functions belonging to Wier(8, L) in these steps:
O Draw 0y,...0y Normal(0, 1) with N = 50, say.

Q@ Minimize Y (6; — w;)? subject to 3, aw? = L2 /7, where the a; are
those which define the Sobolev ellipsoid Osop(, L).

@ Set m(x) = ZJN:1 Wjgj(x), where W, ..., Wy are from step 2 and
{¢1, &2, ...} is the Fourier basis.

Next slide plots several after subtracting m(0) (to aid comparison).
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Infinite-dimensional Normal means model

Let
Zj:9j+U§j, j:1,2,...,

where @ = (61,05, ...) is unknown, &1, &, .. .,iﬂ? N(0,1), and o > 0.

Want to find minimax risk for estimating 0 in the above model when

© 0 lies in a general ellipsoid

©(c,a1,a2,...) = {(91,92,...)€R: i9f<ooand iaf&f gcz}.

j=1 j=1

Q 0 € Osep(5,1).
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o Consider only linear estimators, i.e. of the form

Ox = (MZi, M2, ...)  for A= (A1, A2, .. ).

o Let

Miin(©(c, a1, a2,...)) = inf sup R(Bx,0)
A 0c0(c,a1,az,...)

denote the linear minimax risk over ©(c, a1, az, ... ), where

R(Bx,0) = > E(NZ —6;).
=1
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Linear minimax risk over a general ellipsoid

Let a1, ap, ... be an increasing seq. such that |{j : a; = 0}| < co and a; — +o0.
Then a unique solution to

o0
1702 (1 = naj)s = ¢ (1)
i=1

over 1 > 0 exists such that, setting ¢; = (1 —na;)4 for j =1,2,... and
L= (l1,05,...), we have

M|in(e(C,a]_,32,~-~)) = sup 0@, S ZKJ’

0€0O(c,a1,az,...)

provided the sum is finite.

The values £, 05, ... are called the Pinsker weights.
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Exercise: To see why one should consider o Y71 ¢; as a candidate for the linear
minimax risk, show the following:

@ We have
) N i 02912
inf R(6x,0) = JZ; 3

@ An equation like that in (1) arises if we solve

00 292
maximize Z o 92 subject to 23291-2 =c2
j=1

© The maximum above is of the same form as 02>~ /.
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@ Prove the linear minimax risk result by establishing

o0

sup R(B¢,0) < o2 ij

0c€0O(c,a1,az,...) =1

and

sup inf R(Bx,0) > 02 ¢;.
0€0(c,a1,32,...) J:Zl !

o Explain why this is sufficient.

Karl Gregory (U. of South Carolina) STAT 824 sp 2025 Lec 7 slides 27 / 30



Adapted from Lemma 3.3 on pages 144-145 of Tsybakov [1]

Let a3 =0, am = aams1 = (2m)?, m=1,2,... and let 7 be the solution to
nto? 308, ai(1 - nay)y = L?/n%P
over n > 0 and set {; = (1 —naj)¢, j=1,2,... Then

0 n= (1 PL(B+1)(28 + 1)) FHE o1 (1 + o(1))
QY 4= Co# (1 + o(1))

as o — 0, where C = L7 (3~ 1(f + 1)) 203 (2 + 1) 7.
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Linear minimax risk over a Sobolev ellipsoid

Under the infinite-dimensional Normal means model we have

Miin(@son(B, L)) =  sup  R(Be,0) = Coz (1 + o(1))
0cOg,,(8,L)

as o — 0, where £ and C are as on the previous slide.

Think of replacing 0 with 02 /n. Then we obtain a minimax risk like
~ 23
Cn 2371 (1+ 0(1)) asn— oo,

which resembles the nonparametric rates we have encountered before.
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