
STAT 824 hw 01
Hoeffding’s inequality, KS test, Brownian bridge, kernel density estimation, Hölder smoothness, higher

order kernels, CV for KDE bandwidth selection

1. Let B be a Brownian motion and B0 be a Brownian bridge.

(a) Show Var
∫ 1

0
B(t)dt = 1/3.

Solution: Note that E
∫ 1

0
B(t)dt = 0 (regarding B(t) as a sum of Normals with zero mean

and regarding also the integral as a sum, pass the expectation operator through the sums).
Then write

Var

∫ 1

0

B(t)dt = E
∫ 1

0

∫ 1

0

B(t)B(s)dtds

=

∫ 1

0

∫ 1

0

EB(t)B(s)dtds

=

∫ 1

0

∫ 1

0

Cov(B(t), B(s))dtds

=

∫ 1

0

∫ 1

0

min(s, t)dtds

=

∫ 1

0

∫ 1

0

[s1(s < t) + t1(t < s)]dtds

= 2

∫ 1

0

∫ t

0

tdt

=

∫ 1

0

t2dt

= 1/3.

We can see Cov(B(t), B(s)) = min(s, t) by noting that for Z1, Z2, . . .
ind∼ Normal(0, 1) we have

lim
n→∞

Cov(
1√
n

bntc∑
i=1

Zi,
1√
n

bnsc∑
i=1

Zi) = min(s, t).

(b) Show Var
∫ 1

0
B0(t)dt = 1/12.



Solution: We have

Var

∫ 1

0

B0(t)dt = Var

∫ 1

0

(B(t)− tB(1))dt

= Var

∫ 1

0

B(t)dt+ Var

∫ 1

0

tB(1)dt− 2 Cov
(∫ 1

0

B(t)dt,

∫ 1

0

tB(1)dt
)

= 1/3 + Var((1/2)B(1))− 2 Cov
(∫ 1

0

B(t)dt, (1/2)B(1)
)

= 1/3 + 1/4 Var(B(1))−
∫ 1

0

Cov(B(t), B(1))dt

= 1/3 + 1/4− 1/2

= 1/12.

2. (a) Use Hoeffding’s inequality to show that for X1, . . . , Xn
ind∼ Bernoulli(p) we have P (|X̄n−p| ≥ ε) ≤

2e−2nε
2

for every ε > 0.

Solution: Noting that Xi − p ∈ [−p, 1 − p] for each i = 1, . . . , n, we can use Hoeffding’s
inequality to write

P (X̄n − p > ε) = P
(
n−1

n∑
i=1

(Xi − p) > ε
)

= P
( n∑

i=1

(Xi − p) > nε
)

≤ exp
(
− 2n2ε2

n

)
= e−2nε

2

.

Likewise P (X̄n − p < −ε) = P (−(X̄n − p) > ε) ≤ e−2nε
2
, so

P (|X̄n − p| > ε) = P (X̄n − p < −ε) + P (X̄n − p > ε) ≤ 2e−2nε
2

.

(b) Let Y1, . . . , Yn be iid with continuous cdf FY . Show that P (|F̂n(y)− F (y)| ≤ ε) ≥ 1− 2e−2nε
2

for
each y ∈ R, where F̂n(y) = n−1

∑n
i=1 1(Yi ≤ y).

Solution: Let p = FY (y) and Xi = 1(Yi < y). Then Xi ∼ Bernoulli(p) and F̂n(y)− FY (y) =
X̄n − p. Therefore P (|F̂n(y)− FY (y)| > ε) ≤ 2e−2nε

2
from the first part.

(c) Explain how what you proved in part (b) is different from the DKW inequality.
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Solution: The DKW inequality is a much stronger result because it is a probability bound
for the maximum difference between F̂n(y) and F (y) across all y. What we proved in part (b)
is for a single fixed value of y. So in part (b) we proved

sup
y∈R

P (|F̂n(y)− F (y)| ≤ ε) ≥ 1− 2e−2nε
2

,

whereas the DKW inequality is

P (sup
y∈R
|F̂n(y)− F (y)| ≤ ε) ≥ 1− 2e−2nε

2

.

The proof of the DWK inequality is much more complicated [1].

3. For any random variable Y ∈ [a, b], show that VarY ≤ (b− a)2/4.

Solution: For y ∈ [a, b] we have

(y − (a+ b)/2)2 ≤ (b− (a+ b)/2)2 = (b− a)2/4.

So

VarY = Var(Y − (a+ b)/2)

= E(Y − (a+ b)/2)2 − [E(Y − (a+ b)/2)]2

≤ E(Y − (a+ b)/2)2

≤ (b− a)2/4.

4. Consider the random variables X and Y , where

Y ∼ Normal(0, 1)

X|δ ∼ Normal(a · δ, 1− a2), where δ ∈ {−1, 1}, with P (δ = 1) = 1/2,

for some a > 0. Suppose random samples X1, . . . , Xn and Y1, . . . , Ym are drawn.

(a) Give EX.

Solution: We have EX = E(E[X|δ]) = aEδ = 0.

(b) Give VarX.

Solution: We get VarX = Var(E[X|δ]) + E(Var[X|δ]) = Var(aδ) + E(1 − a2) = 1, since
Var δ = 1.
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(c) Give EY 3 and EX3.

Solution: The distributions are symmetric around 0 so they will have third moment equal
to zero.

(d) Fix n = 60 and m = 80 and, for each a ∈ {1 − (1/2)j : j = 0, 1, . . . , 8}, generate 100 random
samples X1, . . . , Xn and Y1, . . . , Ym (the densities are pictured below) and report for each value
of a the proportion of times the two-sample Kolmogorov-Smirnov test rejects the null hypotheses
of equal cdfs (make a table). Do NOT use the R function ks.test(); write your own code in R
or python and turn it in along with the table.
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0
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Solution: I got the table

j 0 1 2 3 4 5 6 7 8
power 0.06 0.07 0.08 0.19 0.51 0.79 0.98 1.00 1.00

(e) Generate a large number of Brownian bridges in order to get approximations to the 0.70, 0.80,
0.90, 0.95, and 0.99 quantiles of the distribution with cdf KS(x) = 1−2

∑∞
i=1(−1)i+1e−2i

2x2
. Turn

in a table of these values.

Solution: The code

N <- 5000

S <- 2000

KS <- numeric(S)

for( s in 1:S){

B <- cumsum(c(0,rnorm(N,0,sqrt(1/N))))

t <- c(0:N)/N

B0 <- B - t * B[N+1]

KS[s] <- max(abs(B0))

}
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quantile(KS,c(.7,.8,.9,.95,.99))

gave me the quantiles

0.70 0.80 0.90 0.95 0.99
0.95 1.06 1.21 1.36 1.61

5. Given a random sample X1, . . . , Xn, find
∫
R xf̂n(x)dx and

∫
R x

2f̂n(x)dx when

f̂n(x) =
1

nh

n∑
i=1

K

(
Xi − x
h

)
,

where h > 0 and

(a) K the standard Normal density.

Solution: We get
∫
R xf̂n(x)dx = X̄n and

∫
R x

2f̂n(x)dx = n−1
∑n

i=1X
2
i + h2.

(b) K is a kernel of order 2.

Solution: We get
∫
R xf̂n(x)dx = X̄n and

∫
R x

2f̂n(x)dx = n−1
∑n

i=1X
2
i .

(c) What is the effect of these different kernels on
∫
R x

2f̂n(x)dx− (
∫
R xf̂n(x)dx)2?

Solution: The Gaussian kernel is a kernel of order 1, and causes the variance according to
f̂n to increase; the kernel of order 2 preserves the variance in the sense that the variance
according to f̂n is equal to the empirical variance of X1, . . . , Xn.

6. Consider the function

N(u) =



32
3
u3, 0 ≤ u < 1/4

32u2 − 32u3 − 8u+ 2/3, 1/4 ≤ u < 2/4
32(1− u)2 − 32(1− u)3 − 8(1− u) + 2/3, 2/4 ≤ u < 3/4
32
3

(1− u)3, 3/4 ≤ u < 1
0, otherwise.

Find a positive integer β and L > 0 such that N(u) ∈ H(β, L).

Solution: We find that N has two continuous derivatives, and the second derivative satisfies a
Lipschitz condition with L = 192. So the best answer is N(u) ∈ H(β = 3, L = 192). But this is
not all we can say: For a visual, we plot below the function N(u) as well as its first two derivatives
N ′(u) and N ′′(u).
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We have

N ′(u) =


32u2, 0 ≤ u < 1/4
64u− 96u2 − 8, 1/4 ≤ u < 2/4
−64(1− u) + 96(1− u)2 + 8, 2/4 ≤ u < 3/4
−32(1− u)2, 3/4 ≤ u < 1
0, otherwise

and

N ′′(u) =


96u, 0 ≤ u < 1/4
64− 192u, 1/4 ≤ u < 2/4
64 + 96(1− u), 2/4 ≤ u < 3/4
64(1− u), 3/4 ≤ u < 1
0, otherwise.

Note that N ′′(x) is not differentiable.

From here we see the following:

1. We can say N(u) belongs to the H(3, L) class for any L ≥ 192, since the maximum absolute
slope of any line tangent to N ′′(u) is 192. We have |N ′′(u) − N ′′(u′)| ≤ 192|u − u′| for any
u, u′ ∈ (0, 1).

2. We can also say N(u) belongs to the H(2, L) class for any L ≥ 32, since the maximum
absolute slope of any line tangent to N ′(u) is 32 = supu∈[0,1] |N ′′(u)| = |N ′′(1/2)|. We have
|N ′(u)−N ′(u′)| ≤ 32|u− u′| for any u, u′ ∈ (0, 1).

3. Indeed, we can also say N(u) belongs to the H(1, L) class (which is the same as the Lipschitz
class) for any L ≥ 8/3, since the maximum absolute slope of any line tangent to N(u)
is 8/3 = supu∈[0,1] |N ′(u)| = N ′(1/3). We have |N(u) − N(u′)| ≤ (8/3)|u − u′| for any
u, u′ ∈ (0, 1).

However, when placing a function in a Hölder class, we prefer to take the maximum number of
derivatives; then after fixing the number of derivatives, we prefer to take the smallest L.
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7. Let {ϕm(·)}∞m=0 represent polynomials defined by

ϕ0(u) =
1√
2
, ϕm(u) =

√
2m+ 1

2

1

2mm!

dm

dum
[
(u2 − 1)m

]
, m = 1, 2, . . .

for u ∈ [−1, 1]. These are known as the Legendre polynomials on [−1, 1]; they are orthonormal with
respect to the Lebesgue measure, which means they have the property∫ 1

−1
ϕm(u)ϕk(u)du =

{
1, m = k
0, m 6= k.

Proposition 1.3 of [2] gives that the function K : R→ R given by

K(u) =
∑̀
m=0

ϕm(0)ϕm(u)1(|u| ≤ 1) (1)

is a kernel of order `.

(a) Use (1) to construct a kernel of order 1.

Solution: We end up with the kernel corresponding to the Rosenblatt estimator; that is

K(u) =
1

2
1(|u| ≤ 1).

(b) Use (1) to construct a kernel of order 2.

Solution: We have

ϕ1(u) =

√
3

4
· u, ϕ2 =

√
5

2
· 3u2 − 1

2

We obtain the kernel

K(u) =

(
9

8
− 15

8
u2
)
1(|u| ≤ 1).

(c) Generate some data and make a plot of the KDE (you must code your own KDE—no using
built-in functions) based on these two kernels. Include in the plot the true density from which
the data were generated (it is up to you how you generate the data. Be creative!). Turn in your
code along with the plots.

Solution: My plots look like this (I considered three different bandwidths. The blue line is
the 2nd order kernel.):
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The kernel of order 4 constructed in this way happens to be

K(u) =

(
225

128
− 1050

128
u2 +

945

128
u4
)
1(|u| ≤ 1),

based on

ϕ3(u) =

√
7

2
· 5u2 − 3u

2
, ϕ4(u) =

√
9

2
· 35u4 − 30u2 + 3

8
.

Here is a plot of of the KDE based on the kernel of order 4:
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8. Write an (elegant) R or python function that chooses the bandwidth h = argminh>0CV (h) from a grid
of candidate values. Refer to Lec 2. Make your own choice of the kernel function K(u). Your function
should have two arguments: x for the data values and N for the number of candidate bandwidths in
the grid.

(a) Include your R or python function when you turn in your hw.

(b) Generate some data from a distribution of your choice and plot on a single set of axes

1. the true density,

2. the KDE under the leave-one-out CV bandwidth,

3. and the KDE under the Sheather-Jones bandwidth.
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