STAT 824 hw 02

Multivariate Taylor expansion, closeness of points in high-dimensional space, Nadaraya-Watson and local
polynomial estimators, CV for bandwidth selection

1. For a function f : RY — R, let
2 f() wal@ o g @)
Vf(xg) = : and V*f(xo) = :

o f(@) ||, s f@) ... Zf(x)

r=x0

For z,zy € R?, show that

S DTN) = o) + [V Fo) (0~ 20) + 5o —) IV o) — o),

ol
|| <2

which is the second-order Taylor expansion of f around z evaluated at x.

Solution: Interpreting the multi-index notation carefully gives

> P 0y = faa)

|af
jal=0
Z %(’xo)(m —29)" = Z [%f(x) s] (@ — @o5)
jal=1 = N

2. Obtain n = 500 realizations of (Xi, X») by running the code

n <- 500; alpha <- 1/3; Z <- runif(n) < alpha; X <- matrix(NA,n,2)
X[,1] <- rnorm(n,2*Z,1);X[,2] <- rnorm(n,3*Z,1)

Use leave-one-out crossvalidation to select the bandwidth for a bivariate kernel density estimator (write
your own code for this). Then make a plot showing the CV criterion as a function of h and a scatterplot
of your (Xj, X») values with contours of your estimate (at the CV choic of bandwidth) overlaid. Report
your chosen bandwidth. My selected bandwidth was h = 0.4. These are my plots:

-0.0400

o
—
ﬁ_

~ 9

E o

3 [

O
o
I
<
S
?

Solution: We can perform leave-one-out crossvalidation just as in the univariate case; the only
complication is how we compute the integral fRQ fn(z)dx. We can get a numerical approximation

to this integral by computing the height of f,(z) over a grid. See the below code:

n <- 500

alpha <- 1/3

Z <- runif(n) < alpha
X <- matrix(NA,n,2)
X[,1] <- rnorm(n,2*Z,1)
X[,2] <- rnorm(n,3*Z,1)

biv_kde <- function(x,Y,h){

val <- mean(dnorm(Y[,1] - x[1],0,h) * dnorm(Y[,2]-x[2],0,h))
return(val)

hh <- seq(.2,.7,by=.01)

gridsize <- 120

x1.seq <- seq(min(X[,1]),max(X[,1]),length = gridsize)
x2.seq <- seq(min(X[,2]),max(X[,2]),length = gridsize)
zz <- matrix(0,gridsize,gridsize)

CV <- numeric(length(hh))
for(k in 1:length(hh)){

Page 2

h <- hh[k]

for(i in 1:gridsize)
for(j in 1:gridsize)q{

zz[i,j] <- biv_kde(x = c(x1l.seql[i],x2.seq[j]),Y = X, h = h)

Ahat <- sum(zz"2*diff(x1.seq) [1] * diff(x2.seq)[2])
sum(zz*diff(xl.seq) [1] * diff(x2.seq)[2]) # should be close to 1

Bhat <- 0

for(i in 1:n){
fnii <- biv_kde(x = X[i,],Y = X[-1i,], h = h)
Bhat <- Bhat + 2 * fnii / n

}

CV[k] <- Ahat - Bhat
print (k)

h_cv <- hh[which.min(CV)]

for(i in 1:gridsize)
for(j in 1:gridsize){

zz[i,j] <- biv_kde(x = c(xl.seqlil,x2.seq[jl),Y = X, h = h_cv)

par (mfrow = c(1,2), mar = c(4.1,4.1,1.1,1.1))
plot(CV ~ hh,

xlab = "h",

ylab "cv(h)")
abline(v = h_cv, 1ty = 3)

plot (X[,2]"X[,1],
col = "dark gray",

xlab = "X1",
ylab = "X2",
)

contour (x1.seq, x2.seq, zz, add = TRUE, nlevels = 20)

Page 3

3. Let X, Xy, ...,

X,, € [0,1]¢ be independent random vectors with the elements of each being independent

and uniformly distributed on the interval [0, 1]. For a vector z € R, let ||7]|oo = max;<p<q|Ts|-
(a) Show that
d 1
; Xl > .
B min 1X = Xilleo 2 505y -

4. For a set of points (X1, Y7),...,

Solution: We have

P(min X - XM<0 PUL X = Xifloo < t)

1<i<n
P[X = Xillee <)
/ / dx,dx
{x€[0,1]9} J{x1€[0,1]%:[lx—x1 [0 <t}
< (2t)%dx
{x€e[0,1]4}
= n(2t)¢,

since the volume of a d-dimensional unit cube with width 2¢ in each dimension is (2¢t)¢. We
then get the result by integrating over the corresponding lower bound for the survival function

(where this is nonnegative). We have

1/(2nt/4)
E min ||X — xwm_/ (1= n-(20)%)dt,
0

1<i<n

which gives the bound.

Give an interpretation of the claim.

Solution: As the dimension of the space in which the data lie grows, the far-between-ness
of the points grows, such that to maintain a dense “cloud” of points in a higher and higher
dimensional space, one must increase the number of points extremely fast.

(X, Y,), the Nadaraya-Watson estimator of m(z) = E[Y|X = z] is

NWy N . __ KX —)
m,, (ZL’) = Z Wm(x>§/z7 with Wm(l') - Z?:l K(h_l(Xj - $)) '

i=1

(a) Show that if K > 0 we have YW (z) = argmin >_7 ,(V; — 0)2K(h (X, —).

(b) Show that

0eR

Page 4

Solution: We have

- Zk# K(h~

(X - X))
Xk = X5))

(X = X)) - YiK(h

2 VK (™)

2 ViK(h™ (X - X))

5. For n = 200, generate data according to Y; = m(X;) +¢;, i = 1,..

e S K X
Y, — mgW(Xz) Yz Wm<Xz)
‘ 1 — Wh(X5)
_ Y —igV(XG)
1= W(XG)
where we obtain the third equality by dividing the numerator and denominator of the fraction
by >y K (W (X — X)),

(¢) Explain why the fact in part (b)) is useful.

Solution: This is useful because it allows us to write

1 n n

CV,(1) = & 3o =)P = 1 3 [

n-
=1

so that we may compute the crossvalidation prediction risk without actually doing crossvali-

dation computationally; this saves time.

=l

ind

.,n, where Xy,... X, ~

Beta(1/2,1/2), independent of ¢4,. .., ¢, S Normal(0, 1), where

Choose via crossvalidation a value of the bandwidth A for the local linear estimator (local polynomial

of order ¢ = 1) using ¢ as the kernel function. Note: You will have to specify a grid of candidate h
values.

(a) Make a plot of the function

m(z) = —250-(z —1/2) - P(z) = (1/\/%)6—22/2

n

1
_ﬁ;

over your grid of candidate bandwidths. It should dip down and rise back up. The weights
Wyi(X;) are the values such that ! (X;) = Y77 Wi(X;)Y;.

(b) Make a scatterplot of the data and overlay the true function; include in the scatterplot the
estimated function at your chosen value of the bandwidth.

ALP(XZ) 2
1—W*(X)

(¢) Turn in your code.

Page 5

Solution: My plot looks like

o

o)

o
o)
Q-

o)
o)
o o)
N o
o
o
o
o)
“] <
o
o
o
L
o : &0
o | Soooso®
— N
[[[[[I
0.00 0.02 0.04 0.06 0.08 0.10

0.0

0.2

0.4

0.6

0.8

1.0

Page 6

