
STAT 824 hw 02
Multivariate Taylor expansion, closeness of points in high-dimensional space, Nadaraya-Watson and local

polynomial estimators, CV for bandwidth selection

1. For a function f : Rd → R, let

∇f(x0) =


∂
∂x1
f(x)
...

∂
∂xd

f(x)


∣∣∣∣∣∣∣
x=x0

and ∇2f(x0) =


∂2

∂x21
f(x) . . . ∂2

∂x1∂xd
f(x)

...
. . .

...
∂2

∂xd∂x1
f(x) . . . ∂2

∂xd
f(x)


∣∣∣∣∣∣∣
x=x0

.

For x, x0 ∈ Rd, show that∑
|α|≤2

Dαf(x0)

α!
(x− x0)α = f(x0) + [∇f(x0)]T (x− x0) +

1

2
(x− x0)T [∇2f(x0)](x− x0),

which is the second-order Taylor expansion of f around x0 evaluated at x.

Solution: Interpreting the multi-index notation carefully gives∑
|α|=0

Dαf(x0)

|α|
(x− x0)α = f(x0)

∑
|α|=1

Dαf(x0)

|α|
(x− x0)α =

d∑
j=1

[
∂

∂xj
f(x)

∣∣∣
x=x0

]
(xj − x0j)

= [∇f(x0)]T (x− x0)∑
|α|=2

Dαf(x0)

|α|
(x− x0)α =

1

2

d∑
j=1

d∑
k=1

[
∂2

∂xjxj
f(x)

∣∣∣
x=x0

]
(xj − x0j)(xk − x0k)

=
1

2
(x− x0)2[∇2f(x0)](x− x0)

2. Obtain n = 500 realizations of (X1, X2) by running the code

n <- 500; alpha <- 1/3; Z <- runif(n) < alpha; X <- matrix(NA,n,2)

X[,1] <- rnorm(n,2*Z,1);X[,2] <- rnorm(n,3*Z,1)

Use leave-one-out crossvalidation to select the bandwidth for a bivariate kernel density estimator (write
your own code for this). Then make a plot showing the CV criterion as a function of h and a scatterplot
of your (X1, X2) values with contours of your estimate (at the CV choic of bandwidth) overlaid. Report
your chosen bandwidth. My selected bandwidth was ĥ = 0.4. These are my plots:

0.2 0.3 0.4 0.5 0.6 0.7

−
0.

04
20

−
0.

04
10

−
0.

04
00

h

C
V

(h
)

−2 0 2 4

−
2

0
2

4
6

X1
X

2

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03 0.035

 0.035

 0.04
 0.045

 0.05

 0
.0

55

 0.06

 0.065

 0
.0

75

Solution: We can perform leave-one-out crossvalidation just as in the univariate case; the only
complication is how we compute the integral

∫
R2 f̂n(x)dx. We can get a numerical approximation

to this integral by computing the height of f̂n(x) over a grid. See the below code:

n <- 500

alpha <- 1/3

Z <- runif(n) < alpha

X <- matrix(NA,n,2)

X[,1] <- rnorm(n,2*Z,1)

X[,2] <- rnorm(n,3*Z,1)

biv_kde <- function(x,Y,h){

val <- mean(dnorm(Y[,1] - x[1],0,h) * dnorm(Y[,2]-x[2],0,h))

return(val)

}

hh <- seq(.2,.7,by=.01)

gridsize <- 120

x1.seq <- seq(min(X[,1]),max(X[,1]),length = gridsize)

x2.seq <- seq(min(X[,2]),max(X[,2]),length = gridsize)

zz <- matrix(0,gridsize,gridsize)

CV <- numeric(length(hh))

for(k in 1:length(hh)){

Page 2

h <- hh[k]

for(i in 1:gridsize)

for(j in 1:gridsize){

zz[i,j] <- biv_kde(x = c(x1.seq[i],x2.seq[j]),Y = X, h = h)

}

Ahat <- sum(zz^2*diff(x1.seq)[1] * diff(x2.seq)[2])

sum(zz*diff(x1.seq)[1] * diff(x2.seq)[2]) # should be close to 1

Bhat <- 0

for(i in 1:n){

fnii <- biv_kde(x = X[i,],Y = X[-i,], h = h)

Bhat <- Bhat + 2 * fnii / n

}

CV[k] <- Ahat - Bhat

print(k)

}

h_cv <- hh[which.min(CV)]

for(i in 1:gridsize)

for(j in 1:gridsize){

zz[i,j] <- biv_kde(x = c(x1.seq[i],x2.seq[j]),Y = X, h = h_cv)

}

par(mfrow = c(1,2), mar = c(4.1,4.1,1.1,1.1))

plot(CV ~ hh,

xlab = "h",

ylab = "CV(h)")

abline(v = h_cv, lty = 3)

plot(X[,2]~X[,1],

col = "dark gray",

xlab = "X1",

ylab = "X2",

)

contour(x1.seq, x2.seq, zz, add = TRUE, nlevels = 20)

Page 3

3. LetX,X1, . . . , Xn ∈ [0, 1]d be independent random vectors with the elements of each being independent
and uniformly distributed on the interval [0, 1]. For a vector x ∈ Rd, let ‖x‖∞ = max1≤k≤d |xk|.
(a) Show that

E min
1≤i≤n

‖X −Xi‖∞ ≥
d

2(d+ 1)
· 1

n1/d
.

Solution: We have

P
(

min
1≤i≤n

‖X −Xi‖∞ ≤ t
)
= P (∪ni=1‖X −Xi‖∞ ≤ t)

≤ nP (‖X −X1‖∞ ≤ t)

=

∫
{x∈[0,1]d}

∫
{x1∈[0,1]d:‖x−x1‖∞≤t}

dx1dx

≤
∫
{x∈[0,1]d}

(2t)ddx

= n(2t)d,

since the volume of a d-dimensional unit cube with width 2t in each dimension is (2t)d. We
then get the result by integrating over the corresponding lower bound for the survival function
(where this is nonnegative). We have

E min
1≤i≤n

‖X −Xi‖∞ ≥
∫ 1/(2n1/d)

0

(1− n · (2t)d)dt,

which gives the bound.

(b) Give an interpretation of the claim.

Solution: As the dimension of the space in which the data lie grows, the far-between-ness
of the points grows, such that to maintain a dense “cloud” of points in a higher and higher
dimensional space, one must increase the number of points extremely fast.

4. For a set of points (X1, Y1), . . . , (Xn, Yn), the Nadaraya-Watson estimator of m(x) = E[Y |X = x] is

m̂NW
n (x) =

n∑
i=1

Wni(x)Yi, with Wni(x) =
K(h−1(Xi − x))∑n
j=1K(h−1(Xj − x))

.

(a) Show that if K ≥ 0 we have m̂NW
n (x) = argmin

θ∈R

∑n
i=1(Yi − θ)2K(h−1(Xi − x).

(b) Show that
Yi − m̂NW

n (Xi)

1−Wni(Xi)
= Yi − m̂NW

n,−i(Xi).

Page 4

Solution: We have

Yi − m̂NW
n,−i(Xi) = Yi −

∑
j 6=i YjK(h−1(Xj −Xi))∑n
k 6=iK(h−1(Xk −Xi))

= Yi −
∑n

j=1 YjK(h−1(Xj −Xi))− YiK(h−1(Xi −Xi))∑n
k 6=iK(h−1(Xk −Xi))

= Yi −
m̂NW
n (Xi)− Yi ·Wni(Xi)

1−Wni(Xi)

=
Yi − m̂NW

n (Xi)

1−Wni(Xi)
,

where we obtain the third equality by dividing the numerator and denominator of the fraction
by
∑n

k=1K(h−1(Xk −Xi)).

(c) Explain why the fact in part (b) is useful.

Solution: This is useful because it allows us to write

CVn(h) =
1

n

n∑
i=1

[Yi − m̂NW
n,−i(Xi)]

2 =
1

n

n∑
i=1

[
Yi − m̂NW

n (Xi)

1−Wni(Xi)

]2
,

so that we may compute the crossvalidation prediction risk without actually doing crossvali-
dation computationally; this saves time.

5. For n = 200, generate data according to Yi = m(Xi) + εi, i = 1, . . . , n, where X1, . . . , Xn
ind∼

Beta(1/2, 1/2), independent of ε1, . . . , εn
ind∼ Normal(0, 1), where

m(x) = −250 · (x− 1/2) · φ (10(x− 1/2)) , φ(z) = (1/
√
2π)e−z

2/2.

Choose via crossvalidation a value of the bandwidth h for the local linear estimator (local polynomial
of order ` = 1) using φ as the kernel function. Note: You will have to specify a grid of candidate h
values.

(a) Make a plot of the function

CVn(h) =
1

n

n∑
i=1

[
Yi − m̂LP

n,1(Xi)

1−W ∗
ni(Xi)

]2
over your grid of candidate bandwidths. It should dip down and rise back up. The weights
W ∗
ni(Xi) are the values such that m̂LP

n,1(Xi) =
∑n

i=1W
∗
ni(Xi)Yi.

(b) Make a scatterplot of the data and overlay the true function; include in the scatterplot the
estimated function at your chosen value of the bandwidth.

(c) Turn in your code.

Page 5

Solution: My plot looks like

0.00 0.02 0.04 0.06 0.08 0.10

1.
0

1.
5

2.
0

2.
5

0.0 0.2 0.4 0.6 0.8 1.0

−
5

0
5

Y

Page 6

