STAT 824 hw 03

Cox-deBoor recursion, largest eigenvalue of a matrix, smoothing and penalized splines, Lindeberg CLT, least-squares splines

1. Use the Cox-deBoor recursion formula to find the quadratic B-spline function $N_{0,2}$ based on the knots 0, 1/3, 2/3, 1.

Solution: We obtain the function

$$N_{0,2} = \begin{cases} (9/2)u^2, & 0 \le u < 1/3\\ 9u - 9u^2 - 3/2, & 1/3 \le u < 2/3\\ (9/2)(1-u)^2, & 2/3 \le u < 1. \end{cases}$$

- 2. Let **A** be a $d \times d$ matrix such that $\mathbf{A} = \sum_{j=1}^{d} \lambda_j \mathbf{u}_j \mathbf{u}_j^T$, where $\mathbf{u}_j^T \mathbf{u}_k = 1$ if j = k and $\mathbf{u}_j^T \mathbf{u}_k = 0$ if $j \neq k$ and $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_d > 0$. Note that any $\mathbf{x} \in \mathbb{R}^d$ can be represented as $\mathbf{x} = \sum_{j=1}^{d} c_j \mathbf{u}_j$, since the eigenvectors of **A** form a basis for \mathbb{R}^d .
 - (a) Show that for any $\mathbf{x} \in \mathbb{R}^d$, we have $\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\|\mathbf{x}\|_2^2} \leq \lambda_1$.

Solution: We have

$$\begin{aligned} \frac{\mathbf{x}^{T} \mathbf{A} \mathbf{x}}{\|\mathbf{x}\|_{2}^{2}} &= \frac{\sum_{j=1}^{d} \lambda_{j} \mathbf{x}^{T} \mathbf{u}_{j} \mathbf{u}_{j}^{T} \mathbf{x}}{\|\sum_{k=1}^{d} c_{k} \mathbf{u}_{k}\|_{2}^{2}} \\ &= \frac{\sum_{j=1}^{d} \lambda_{j} (\mathbf{x}^{T} \mathbf{u}_{j})^{2}}{\sum_{k=1}^{d} c_{k} \mathbf{u}_{k}^{T} \sum_{l=1}^{d} c_{l} \mathbf{u}_{l}} \\ &= \frac{\sum_{j=1}^{d} \lambda_{j} (\sum_{k=1}^{d} c_{k} \mathbf{u}_{k}^{T} \mathbf{u}_{j})^{2}}{\sum_{k=1}^{d} c_{k}^{2}} \\ &= \frac{\sum_{j=1}^{d} \lambda_{j} c_{j}^{2}}{\sum_{k=1}^{d} c_{k}^{2}} \\ &\leq \max\{\lambda_{1}, \dots, \lambda_{d}\} \\ &= \lambda_{1}. \end{aligned}$$

(b) Show that for $x = a \cdot u_1, a \in \mathbb{R}$, we have $\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\|\mathbf{x}\|_2^2} = \lambda_1$.

Solution: Using the previous work, we have

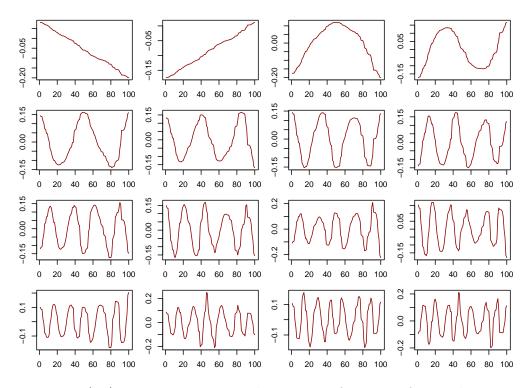
$$\frac{\mathbf{x}^T \mathbf{A} \mathbf{x}}{\|\mathbf{x}\|_2^2} = \frac{\lambda_1 a^2}{a^2} = \lambda_1.$$

3. For the smoothing spline estimator

$$\hat{m}_n^{\text{sspl}} = \underset{g \in \mathcal{W}_2}{\operatorname{argmin}} \sum_{i=1}^n [Y_i - g(X_i)]^2 + \lambda \int_0^1 [g''(x)]^2 dx$$

Green and Yandell (1985), [1], give details for computing the smoother matrix **S**, which is the matrix such that $(\hat{m}_n^{\text{sspl}}(X_1), \ldots, \hat{m}_n^{\text{sspl}}(X_n))^T = \mathbf{SY}$. Specifically, $\mathbf{S} = (\mathbf{I}_n + \lambda \mathbf{K})^{-1}$, with $\mathbf{K} = \mathbf{\Delta}^T \mathbf{C}^{-1} \mathbf{\Delta}$, where, for $h_i = X_{i+1} - X_i$ (assume that X_1, \ldots, X_n are sorted in increasing order), $\mathbf{\Delta}$ is a tridiagonal $(n-2) \times n$ matrix with $\Delta_{ii} = 1/h_i$, $\mathbf{\Delta}_{i,i+1} = -(1/h_i + 1/h_{i+1})$, $\mathbf{\Delta}_{i,i+2} = 1/h_{i+1}$, and **C** is a symmetric $(n-2) \times (n-2)$ tridiagonal matrix with $\mathbf{C}_{i-1,i} = \mathbf{C}_{i,i-1} = h_i/6$ and $C_{ii} = (h_i + h_{i+1})/3$.

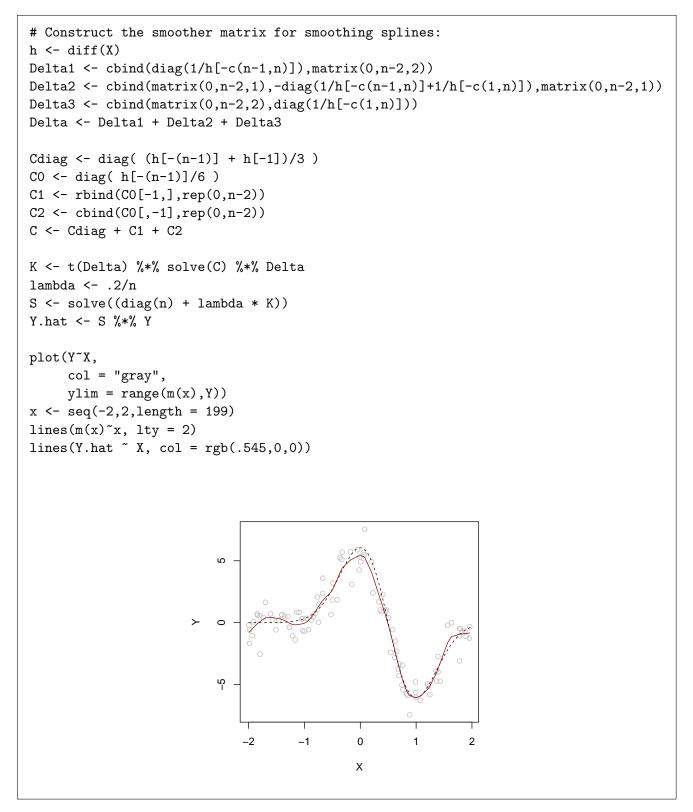
(a) Generate $X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Uniform}(-2, 2)$ for n = 100, compute the matrix **S**, and then plot the first 16 eigenvectors. The plot should look something like this:



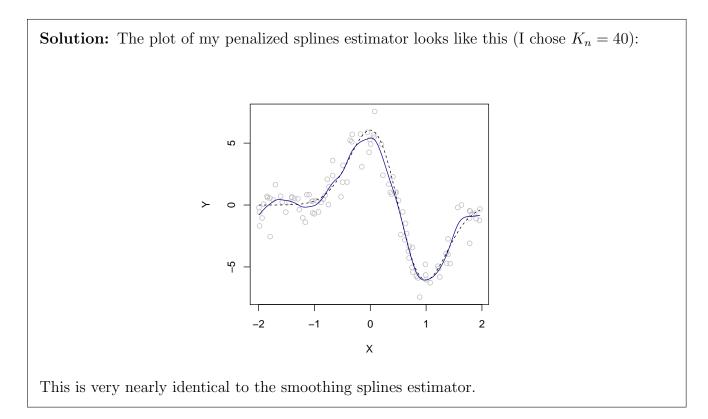
(b) Now generate $Y_i = m(X_i) + \varepsilon_i$, i = 1, ..., n, where *m* is a function of your choosing. Then make a scatter plot of your $(X_1, Y_1), ..., (X_n, Y_n)$ values with the true function overlaid. Then plot the values $\hat{m}_n^{\text{sspl}}(X_1), ..., \hat{m}_n^{\text{sspl}}(X_n)$ against $X_1, ..., X_n$, for some value of λ that makes the estimator look close to the true function.

Solution:

m <- function(x){ - 50 * (x - 1/2) * dnorm(2*(x - 1/2))}
n <- 100
X <- sort(runif(n,-2,2))
Y <- m(X) + rnorm(n)</pre>



(c) On the same data, fit a penalized spline estimator with the same λ value and some fairly large number of knots (you can choose). Compare the fit of the smoothing splines and the penalized splines estimator.



4. For each $n \ge 1$, let $Y_i = x_i \beta + \varepsilon_i$, i = 1, ..., n, where $\varepsilon_1, ..., \varepsilon_n$ are iid with $\mathbb{E}\varepsilon_1 = 0$ and $\operatorname{Var} \varepsilon_1 = \sigma^2 < \infty$ and $x_1, ..., x_n$ are deterministic, and let $\hat{\beta}_n = \sum_{i=1}^n x_i Y_i / \sum_{i=1}^n x_i^2$. Use the corollary to the Lindeberg Central Limit Theorem given in Lec 04 to show that

$$\frac{\max_{1 \le i \le n} |x_i|}{\sqrt{\sum_{i=1}^n x_i^2}} \to 0 \text{ as } n \to \infty$$

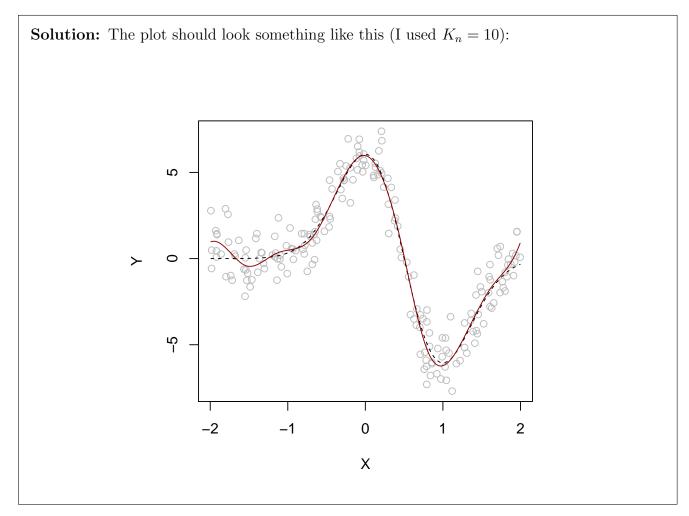
implies $\sqrt{n}(n^{-1}\sum_{i=1}^{n}x_i^2)^{1/2}(\hat{\beta}_n-\beta)/\sigma \to N(0,1)$ in distribution as $n \to \infty$.

Solution: We find that we may write

$$\sqrt{n}(n^{-1}\sum_{i=1}^{n}x_{i}^{2})^{1/2}(\hat{\beta}_{n}-\beta)/\sigma = \frac{\sum_{i=1}^{n}x_{i}(\varepsilon_{i}/\sigma)}{\sqrt{\sum_{i=1}^{n}x_{i}^{2}}},$$

to which the corollary to the Lindeberg Central Limit Theorem directly applies.

- 5. For a sample size of n = 200, generate $Y_i = m(X_i) + \varepsilon_i$, for $i = 1, \ldots, n$, where $\varepsilon_1, \ldots, \varepsilon_n \stackrel{\text{ind}}{\sim} \text{Normal}(0, 1), X_1, \ldots, X_n \stackrel{\text{ind}}{\sim} \text{Uniform}(-2, 2)$, and with $m(x) = -50(x 1/2)\phi(2(x 1/2))$.
 - (a) Construct an estimate of m with a least squares splines estimator using cubic B splines basis functions; choose some number K_n of intervals into which to subdivide the range of the covariate values, and position the knots at equally spaced quantiles of X_1, \ldots, X_n . Plot your estimator of m as well as the true function on a scatterplot of the (X, Y) values.



(b) The number of intervals K_n into which we break the range of the covariate values plays an important role in least-squares splines estimation. Run a simulation: On each of 500 simulated data sets, build a 95% confidence interval for $m(x_0)$ at the point $x_0 = 0$ based on your least-squares splines estimator under $K_n = 1, ..., 15$. So for each data set you will have 15 confidence intervals. Record for each choice of K_n the proportion of times the confidence interval contained the true value of $m(x_0)$ as well as the average width of the confidence intervals across the 500 data sets. Arrange your results in a table like the one below (this is the table I got, so your numbers should be fairly close to these):

10	1		3												
coverage															
average width	0.40	0.53	0.50	0.62	0.59	0.71	0.69	0.79	0.80	0.87	0.90	0.95	0.98	1.03	1.06

(c) Why does the average width keep getting wider as K_n increases?

Solution: Intuitively, when we make K_n larger we introduce more "parameters" to the model—more coefficients to estimate, so the variability will be larger. Also, recall that the variance of the least-squares splines estimator is like a constant times K_n/n , so as K_n increases,

the variance of the estimator increases, which is reflected in wider confidence intervals.

(d) Why does the coverage start out too low and then stabilize around 0.95 as K_n increases?

Solution: We are seeing the bias vanish as K_n increases. Recall that the bias of the least-squares splines estimator is like a constant times $K_n^{-\beta}$, where $\beta > 0$ describes the smoothness of the function. So as K_n increases, the bias decreases, and the confidence interval centers itself at a height closer to that of the true function.

References

[1] Peter J Green and Brian S Yandell. Semi-parametric generalized linear models. In *Generalized linear models*, pages 44–55. Springer, 1985.