
STAT 824 hw 03
Cox-deBoor recursion, largest eigenvalue of a matrix, smoothing and penalized splines, Lindeberg CLT,

least-squares splines

1. Use the Cox-deBoor recursion formula to find the quadratic B-spline function N0,2 based on the knots
0, 1/3, 2/3, 1.

Solution: We obtain the function

N0,2 =

(9/2)u2, 0 ≤ u < 1/3
9u− 9u2 − 3/2, 1/3 ≤ u < 2/3
(9/2)(1− u)2, 2/3 ≤ u < 1.

2. Let A be a d× d matrix such that A =
∑d

j=1 λjuju
T
j , where uTj uk = 1 if j = k and uTj uk = 0 if j 6= k

and λ1 ≥ λ2 ≥ · · · ≥ λd > 0. Note that any x ∈ Rd can be represented as x =
∑d

j=1 cjuj, since the

eigenvectors of A form a basis for Rd.

(a) Show that for any x ∈ Rd, we have xTAx
‖x‖22

≤ λ1.

Solution: We have

xTAx

‖x‖22
=

∑d
j=1 λjx

Tuju
T
j x

‖
∑d

k=1 ckuk‖22

=

∑d
j=1 λj(x

Tuj)
2∑d

k=1 cku
T
k

∑d
l=1 clul

=

∑d
j=1 λj(

∑d
k=1 cku

T
kuj)

2∑d
k=1 c

2
k

=

∑d
j=1 λjc

2
j∑d

k=1 c
2
k

≤ max{λ1, . . . , λd}
= λ1.

(b) Show that for x = a · u1, a ∈ R, we have xTAx
‖x‖22

= λ1.

Solution: Using the previous work, we have

xTAx

‖x‖22
=
λ1a

2

a2
= λ1.

3. For the smoothing spline estimator

m̂sspl
n = argmin

g∈W2

n∑
i=1

[Yi − g(Xi)]
2 + λ

∫ 1

0

[g′′(x)]2dx

Green and Yandell (1985), [1], give details for computing the smoother matrix S, which is the matrix
such that (m̂sspl

n (X1), . . . , m̂
sspl
n (Xn))T = SY. Specifically, S = (In + λK)−1, with K = ∆TC−1∆,

where, for hi = Xi+1 −Xi (assume that X1, . . . , Xn are sorted in increasing order), ∆ is a tridiagonal
(n− 2)×n matrix with ∆ii = 1/hi, ∆i,i+1 = −(1/hi + 1/hi+1), ∆i,i+2 = 1/hi+1, and C is a symmetric
(n− 2)× (n− 2) tridiagonal matrix with Ci−1,i = Ci,i−1 = hi/6 and Cii = (hi + hi+1)/3.

(a) Generate X1, . . . , Xn
ind∼ Uniform(−2, 2) for n = 100, compute the matrix S, and then plot the

first 16 eigenvectors. The plot should look something like this:

0 20 40 60 80 100

−
0.

20
−

0.
05

Index

0 20 40 60 80 100

−
0.

15
−

0.
05

Index

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100
−

0.
20

0.
00

Index

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

15
0.

05

Index

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

15
0.

00
0.

15

Index

0 20 40 60 80 100

−
0.

15
0.

00
0.

15

Index

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

15
0.

00
0.

15

Index

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

15
0.

00
0.

15

Index
ei

ge
n.

S
$v

ec
to

rs
[,

i]

0 20 40 60 80 100

−
0.

15
0.

00
0.

15

Index

0 20 40 60 80 100

−
0.

15
0.

00
0.

15

Index

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

2
0.

0
0.

2

Index

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

15
0.

05

Index

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

1
0.

1

0 20 40 60 80 100

−
0.

2
0.

0
0.

2

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

1
0.

1

ei
ge

n.
S

$v
ec

to
rs

[,
i]

0 20 40 60 80 100

−
0.

2
0.

0
0.

2

ei
ge

n.
S

$v
ec

to
rs

[,
i]

(b) Now generate Yi = m(Xi) + εi, i = 1, . . . , n, where m is a function of your choosing. Then make
a scatter plot of your (X1, Y1), . . . , (Xn, Yn) values with the true function overlaid. Then plot the
values m̂sspl

n (X1), . . . , m̂
sspl
n (Xn) against X1, . . . , Xn, for some value of λ that makes the estimator

look close to the true function.

Solution:

m <- function(x){ - 50 * (x - 1/2) * dnorm(2*(x - 1/2))}

n <- 100

X <- sort(runif(n,-2,2))

Y <- m(X) + rnorm(n)

Page 2

Construct the smoother matrix for smoothing splines:

h <- diff(X)

Delta1 <- cbind(diag(1/h[-c(n-1,n)]),matrix(0,n-2,2))

Delta2 <- cbind(matrix(0,n-2,1),-diag(1/h[-c(n-1,n)]+1/h[-c(1,n)]),matrix(0,n-2,1))

Delta3 <- cbind(matrix(0,n-2,2),diag(1/h[-c(1,n)]))

Delta <- Delta1 + Delta2 + Delta3

Cdiag <- diag((h[-(n-1)] + h[-1])/3)

C0 <- diag(h[-(n-1)]/6)

C1 <- rbind(C0[-1,],rep(0,n-2))

C2 <- cbind(C0[,-1],rep(0,n-2))

C <- Cdiag + C1 + C2

K <- t(Delta) %*% solve(C) %*% Delta

lambda <- .2/n

S <- solve((diag(n) + lambda * K))

Y.hat <- S %*% Y

plot(Y~X,

col = "gray",

ylim = range(m(x),Y))

x <- seq(-2,2,length = 199)

lines(m(x)~x, lty = 2)

lines(Y.hat ~ X, col = rgb(.545,0,0))

−2 −1 0 1 2

−
5

0
5

X

Y

(c) On the same data, fit a penalized spline estimator with the same λ value and some fairly large
number of knots (you can choose). Compare the fit of the smoothing splines and the penalized
splines estimator.

Page 3

Solution: The plot of my penalized splines estimator looks like this (I chose Kn = 40):

−2 −1 0 1 2

−
5

0
5

X

Y

This is very nearly identical to the smoothing splines estimator.

4. For each n ≥ 1, let Yi = xiβ+εi, i = 1, . . . , n, where ε1, . . . , εn are iid with Eε1 = 0 and Var ε1 = σ2 <∞
and x1, . . . , xn are deterministic, and let β̂n =

∑n
i=1 xiYi/

∑n
i=1 x

2
i . Use the corollary to the Lindeberg

Central Limit Theorem given in Lec 04 to show that

max1≤i≤n |xi|√∑n
i=1 x

2
i

→ 0 as n→∞

implies
√
n(n−1

∑n
i=1 x

2
i)

1/2(β̂n − β)/σ → N(0, 1) in distribution as n→∞.

Solution: We find that we may write

√
n(n−1

n∑
i=1

x2i)
1/2(β̂n − β)/σ =

∑n
i=1 xi(εi/σ)√∑n

i=1 x
2
i

,

to which the corollary to the Lindeberg Central Limit Theorem directly applies.

5. For a sample size of n = 200, generate Yi = m(Xi) + εi, for i = 1, . . . , n, where ε1, . . . , εn
ind∼

Normal(0, 1), X1, . . . , Xn
ind∼ Uniform(−2, 2), and with m(x) = −50(x− 1/2)φ(2(x− 1/2)).

(a) Construct an estimate of m with a least squares splines estimator using cubic B splines basis
functions; choose some number Kn of intervals into which to subdivide the range of the covariate
values, and position the knots at equally spaced quantiles of X1, . . . , Xn. Plot your estimator of
m as well as the true function on a scatterplot of the (X, Y) values.

Page 4

Solution: The plot should look something like this (I used Kn = 10):

−2 −1 0 1 2

−
5

0
5

X

Y

(b) The number of intervals Kn into which we break the range of the covariate values plays an
important role in least-squares splines estimation. Run a simulation: On each of 500 simulated
data sets, build a 95% confidence interval for m(x0) at the point x0 = 0 based on your least-
squares splines estimator under Kn = 1, . . . , 15. So for each data set you will have 15 confidence
intervals. Record for each choice of Kn the proportion of times the confidence interval contained
the true value of m(x0) as well as the average width of the confidence intervals across the 500 data
sets. Arrange your results in a table like the one below (this is the table I got, so your numbers
should be fairly close to these):

Kn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
coverage 0.00 0.00 0.00 0.24 0.05 0.72 0.65 0.87 0.93 0.94 0.96 0.95 0.95 0.95 0.94

average width 0.40 0.53 0.50 0.62 0.59 0.71 0.69 0.79 0.80 0.87 0.90 0.95 0.98 1.03 1.06

(c) Why does the average width keep getting wider as Kn increases?

Solution: Intuitively, when we make Kn larger we introduce more “parameters” to the
model—more coefficients to estimate, so the variability will be larger. Also, recall that the
variance of the least-squares splines estimator is like a constant times Kn/n, so as Kn increases,

Page 5

the variance of the estimator increases, which is reflected in wider confidence intervals.

(d) Why does the coverage start out too low and then stabilize around 0.95 as Kn increases?

Solution: We are seeing the bias vanish as Kn increases. Recall that the bias of the least-
squares splines estimator is like a constant times K−βn , where β > 0 describes the smoothness
of the function. So as Kn increases, the bias decreases, and the confidence interval centers
itself at a height closer to that of the true function.

References

[1] Peter J Green and Brian S Yandell. Semi-parametric generalized linear models. In Generalized linear
models, pages 44–55. Springer, 1985.

Page 6

