STAT 824 hw 04

Orthogonal series estimator, backfitting, sparse backfitting, bootstrap

1. Suppose $\{\varphi_j\}_{j=1}^{\infty}$ is a basis for all functions $f:[0,1] \to \mathbb{R}$ such that $\int_0^1 |f(x)|^2 dx < \infty$ which satisfies

$$\int_0^1 \varphi_j(x)\varphi_{j'}(x)dx = \begin{cases} 1, & j=j'\\ 0, & j\neq j'. \end{cases}$$
(1)

A basis with the above property is called an *orthonormal basis*. Assume we can represent f as

$$f(x) = \sum_{i=1}^{\infty} \theta_j \varphi_j(x), \quad \text{where} \quad \theta_j = \int_0^1 f(x) \varphi_j(x) dx, \quad j = 1, 2, \dots$$

We will consider estimating the approximation $f_n^N(x) = \sum_{i=1}^N \theta_j \varphi_j(x)$ for some finite N in the context of nonparametric regression.

- (a) Consider the trigonometric basis, which is given by $\varphi_1(x) = 1$, $\varphi_{2k}(x) = \sqrt{2}\cos(2\pi kx)$, and $\varphi_{2k+1}(x) = \sqrt{2}\sin(2\pi kx)$ for $k = 1, 2, \ldots$ for $x \in [0, 1]$. Show that this basis is orthonormal, i.e. that it satisfies 1.
- (b) Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be data pairs such that $Y_i = f(X_i) + \varepsilon_i$, where $X_i = i/n$, $i = 1, \ldots, n$ and $\varepsilon_1, \ldots, \varepsilon_n$ are independent with mean zero and variance $\sigma^2 < \infty$. Consider the estimator \hat{f}_n^N of f given by

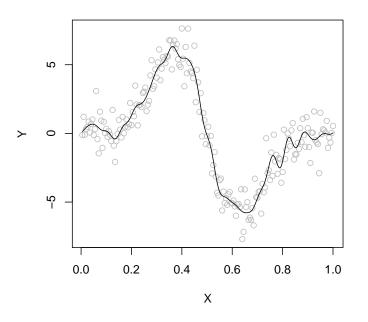
$$\hat{f}_{n}^{N}(x) = \sum_{j=1}^{N} \hat{\theta}_{j} \varphi_{j}(x), \quad \text{where} \quad \hat{\theta}_{j} = n^{-1} \sum_{i=1}^{n} Y_{i} \varphi_{j}(X_{i}), \quad j = 1, \dots, N.$$
 (2)

This type of estimator is called an *orthogonal series estimator*. See [2] for more details.

- i. For $x \in [0,1]$, find weights $W_{n1}(x), \ldots, W_{nn}(x)$ such that $\hat{f}_n^N(x) = \sum_{i=1}^n W_{ni}(x)Y_i$.
- ii. Give the entries of the matrix **S** such that $\hat{\mathbf{f}}_n^N = \mathbf{S}\mathbf{Y}$, where $\hat{\mathbf{f}}_n^N = (\hat{f}_n^N(X_1), \dots, \hat{f}_n^N(X_n))^T$ and $\mathbf{Y} = (Y_1, \dots, Y_n)^T$.
- iii. Give the matrix **B** such that $\mathbf{S} = (1/n)\mathbf{B}\mathbf{B}^T$.
- iv. Generate data with the R code

m <- function(x){ - 25 * 4 * (2*x - 1) * dnorm(4*(2*x - 1))}
n <- 200
X <- c(1:n)/n
Y <- m(X) + rnorm(n,0,1)</pre>

Then make a scatterplot of the data with a curve overlaid which traces the fitted values $\hat{f}_n^N(X_1), \ldots, \hat{f}_n^N(X_n)$ of the estimator in (2) based on the trigonometric basis with functions for $k = 1, \ldots, 20$, such that N = 41. My plot looks like this:

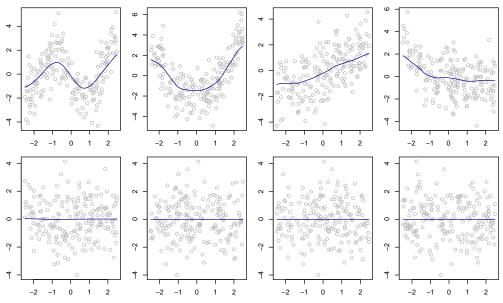


- v. What do you notice about the quantities $n^{-1} \sum_{i=1}^{n} \varphi_j(i/n) \varphi_{j'}(i/n), 1 \leq j, j' \leq N$, in relation to the property in (1)? *Hint: These are the entries of the matrix* $(1/n)\mathbf{B}^T\mathbf{B}$, which you can compute in R.
- vi. Now consider using the trigonometric basis with functions for k = 1, ..., K, giving N = 2K+1 total basis functions: Choose K via leave-one-out crossvalidation (note that you can use the special trick for linear estimators to save computation time). Report the chosen value of K and the corresponding number of basis functions N. Also make a scatterplot of the data with the curve tracing the fitted values overlaid.
- 2. Import into R the data in this .Rdata file and fit the additive model

$$Y = \mu + m_1(X_1) + \dots + m_8(X_8) + \varepsilon$$

with a soft-thresholded (sparse) Nadaraya-Watson backfitting estimator, enforcing the usual identifiability condition on the additive components.

- (a) Give $\hat{\mu}$.
- (b) Make a plot like the one pictured below (choose a bandwidth h and a soft-thresholding parameter just by eyeballing the plot), where in panel j, the points $(Y_i \sum_{k \neq j} \hat{m}_k(X_{ik}), X_{kj}), i = 1, \ldots, n$, are plotted along with a line tracing the fitted values $\hat{m}_j(X_{ij}), i = 1, \ldots, n$.



(c) Now fit Nadaraya-Watson backfitting estimator *without* soft-thresholding; make a similar plot.

3. Let $(X_1, Y_1), \ldots, (X_n, Y_n)$ be iid realizations of (X, Y). Let $\rho = \operatorname{corr}(X, Y)$ and $\hat{\rho}$ be the sample correlation. If (X, Y) are bivariate Normal then $\sqrt{n}(\zeta(\hat{\rho}) - \zeta(\rho)) \xrightarrow{D} \operatorname{Normal}(0, 1)$ as $n \to \infty$ where

$$\zeta(\rho) = \frac{1}{2} \log \left(\frac{1+\rho}{1-\rho} \right).$$

(a) Let $Y|X \sim \text{Normal}(\rho X, 1 - \rho^2)$, $X \sim \text{Normal}(0, 1)$ so that (X, Y) are bivariate standard Normal with correlation ρ . For $\alpha = 0.05$, n = 50, $\rho = 1/2$, and B = 500, run a simulation with 500 simulated data sets to compare the coverage of ρ and the average width of the three intervals

$$\mathcal{A}_{n} = [\zeta^{-1}(\zeta(\hat{\rho}) - n^{-1/2} z_{\alpha/2}), \zeta^{-1}(\zeta(\hat{\rho}) + n^{-1/2} z_{\alpha/2})]$$
$$\mathcal{B}_{n}^{\text{pctl}} = [\hat{\rho}_{n}^{*((\alpha/2)B)}, \hat{\rho}_{n}^{*((1-\alpha/2)B)}]$$
$$\mathcal{B}_{n}^{\text{piv}} = [\zeta^{-1}(2\hat{\zeta}_{n} - \hat{\zeta}_{n}^{*((1-\alpha/2)B)}), \zeta^{-1}(2\hat{\zeta}_{n} - \hat{\zeta}_{n}^{*((\alpha/2)B)})],$$

where $\zeta^{-1}(z) = \frac{e^{2z}-1}{e^{2z}+1}$, $\hat{\rho}_n^{*(1)} \leq \cdots \leq \hat{\rho}_n^{*(B)}$ are sorted bootstrap realizations of $\hat{\rho}$ from samples drawn with replacement from $(X_1, Y_1), \ldots, (X_n, Y_n)$, and $\hat{\zeta}_n^{*(b)} = \zeta(\hat{\rho}_n^{*(b)})$ for $b = 1, \ldots, B$ with $\hat{\zeta}_n = \zeta(\hat{\rho}_n)$.

- (b) Now let $Y|X \sim \text{Normal}(X, \sigma^2)$, $X \sim \text{Exponential}(\lambda)$ with $\lambda = 1$ and $\sigma^2 = 3$. Find $\rho = \text{corr}(X, Y)$ and compare the coverage of ρ and the width of the intervals for $\alpha = 0.05$, n = 50, and B = 500 as before.
- (c) Why does the asymptotic interval \mathcal{A}_n perform poorly under the settings in part (b)?
- (d) Which interval(s) performed best in parts (a) and (b)?
- 4. Let $\mathbf{X} \in \mathbb{R}^{n \times p}$, p < n, be a full-rank matrix and let $\mathbf{Y} \in \mathbb{R}^n$ and partition the columns of \mathbf{X} such that $\mathbf{X} = [\mathbf{X}_1, \mathbf{X}_{-1}]$. Let $\hat{\boldsymbol{\beta}} \in \mathbb{R}^p$ be the vector such that $(\mathbf{X}^T \mathbf{X})\hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y}$ and let $\hat{\boldsymbol{\beta}}$ be partitioned in the

same way as \mathbf{X} into

$$\hat{oldsymbol{eta}} = \left[egin{array}{c} \hat{oldsymbol{eta}}_1 \ \hat{oldsymbol{eta}}_{-1} \end{array}
ight].$$

Define $\mathbf{P}_1 = \mathbf{X}_1(\mathbf{X}_1^T\mathbf{X}_1)^{-1}\mathbf{X}_1^T$ and $\mathbf{P}_{-1} = \mathbf{X}_{-1}(\mathbf{X}_{-1}^T\mathbf{X}_{-1})^{-1}\mathbf{X}_{-1}^T$, and let $\mathbf{X}_{1\setminus-1} = (\mathbf{I} - \mathbf{P}_{-1})\mathbf{X}_1$ be the residuals from regressions of the columns of \mathbf{X}_1 onto the columns of \mathbf{X}_{-1} .

- (a) Let $\hat{\mathbf{Y}}_1 = \mathbf{X}_1 \hat{\boldsymbol{\beta}}_1$ and let $\hat{\mathbf{Y}}_{-1} = \mathbf{X}_{-1} \hat{\boldsymbol{\beta}}_{-1}$.
 - i. Show that the normal equations $(\mathbf{X}^T \mathbf{X}) \hat{\boldsymbol{\beta}} = \mathbf{X}^T \mathbf{Y}$ are equivalent to

$$\hat{\mathbf{Y}}_1 = \mathbf{P}_1(\mathbf{Y} - \hat{\mathbf{Y}}_{-1})$$
$$\hat{\mathbf{Y}}_{-1} = \mathbf{P}_{-1}(\mathbf{Y} - \hat{\mathbf{Y}}_1).$$

ii. Show that

$$\left(\begin{array}{cc}\mathbf{I} & \mathbf{P}_1\\ \mathbf{P}_{-1} & \mathbf{I}\end{array}\right)\left(\begin{array}{c}\hat{\mathbf{Y}}_1\\ \hat{\mathbf{Y}}_{-1}\end{array}\right) = \left(\begin{array}{c}\mathbf{P}_1\mathbf{Y}\\ \mathbf{P}_{-1}\mathbf{Y}\end{array}\right).$$

- (b) Show that $\hat{\mathbf{Y}}_1 = (\mathbf{I} \mathbf{P}_1 \mathbf{P}_{-1})^{-1} \mathbf{P}_1 (\mathbf{I} \mathbf{P}_{-1}) \mathbf{Y}.$
- (c) The Gauss–Seidel or backfitting algorithm for finding $\hat{\mathbf{Y}}_1$ and $\hat{\mathbf{Y}}_{-1}$ is the following:

Initialize $\hat{\mathbf{Y}}_1 \leftarrow \mathbf{0}$ and $\hat{\mathbf{Y}}_{-1} \leftarrow \mathbf{0}$. Then repeat the steps

i. $\hat{\mathbf{Y}}_1 \leftarrow \mathbf{P}_1(\mathbf{Y} - \hat{\mathbf{Y}}_{-1})$ ii. $\hat{\mathbf{Y}}_{-1} \leftarrow \mathbf{P}_{-1}(\mathbf{Y} - \hat{\mathbf{Y}}_1)$

until $\hat{\mathbf{Y}}_1$ and $\hat{\mathbf{Y}}_{-1}$ do not change.

Show that in the kth iteration of the backfitting algorithm, we have

$$\hat{\mathbf{Y}}_{1}^{(k)} \leftarrow \left[\mathbf{I} - \sum_{l=0}^{k-1} (\mathbf{P}_{1}\mathbf{P}_{-1})^{l} (\mathbf{I} - \mathbf{P}_{1})\right] \mathbf{Y}_{1}$$

(d) Show that

$$\mathbf{I} - \sum_{l=0}^{\infty} (\mathbf{P}_{1}\mathbf{P}_{-1})^{l} (\mathbf{I} - \mathbf{P}_{1}) = (\mathbf{I} - \mathbf{P}_{1}\mathbf{P}_{-1})^{-1}\mathbf{P}_{1} (\mathbf{I} - \mathbf{P}_{-1}),$$

in consequence of which $\hat{\mathbf{Y}}_{1}^{(k)} \to \hat{\mathbf{Y}}_{1}$ as $k \to \infty$. You will make use of the fact that for any real-valued square matrix \mathbf{A} , $\mathbf{I} + \mathbf{A} + \mathbf{A}^{2} + \cdots = (\mathbf{I} - \mathbf{A})^{-1}$, provided $\lambda_{\max}(\mathbf{A}^{T}\mathbf{A}) < 1$, and you may assume $\lambda_{\max}(\mathbf{P}_{1}\mathbf{P}_{-1}\mathbf{P}_{1}) < 1$.

References

- [1] John F Monahan. A primer on linear models. CRC Press, 2008.
- [2] Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Science & Business Media, 2008.