
STAT 824 hw 05
Influence functions, Edgeworth expansions, bootstrap, residual and wild bootstrap in regression

1. Consider the functional σ2 = T (F ) =
∫

(x−
∫
tdF (t))2dF (x).

(a) Find the influence function ϕF .

(b) Identify the remainder Rn in the expansion
√
n(σ̂2

n − σ2) = n−1/2
∑n

i=1 ϕF (Xi) +
√
nR(F̂n − F )

and argue that it converges in probability to 0 as n→∞.

(c) Give the asymptotic behavior of
√
n(σ̂2

n − σ2) as n→∞.

2. (a) For a Normal random variable:

i. Give µ3, the third central moment.

ii. Give µ4/σ
4, where µ4 is the fourth central moment and σ2 is the variance.

(b) Suppose X1, . . . , Xn
ind∼ F with EX1 = µ and VarX1 = σ2 <∞.

i. Explain why we expect fast convergence to Normality of
√
n(X̄n−µ)/σ when F is symmetric.

ii. Suppose F has the same skewness (µ3/σ
3) and kurtosis (µ4/σ

4) as the Normal distribution.
Explain why we expect the convergence to Normality of

√
n(X̄n − µ)/σ to be super fast.

3. Let X1, . . . , Xn
ind∼ F with VarX1 < ∞. Let T be the statistical functional T (F ) = g(

∫
xdF (x)), for

a differentiable function g : R → R with derivative g′ satisfying |g′(x) − g′(x′)| ≤ L|x − x′| for all
x, x′ ∈ R. In the von Mises expansion

√
n(T (F̂n)− T (F )) =

1√
n

n∑
i=1

ϕF (Xi) +
√
nR(F̂n − F ),

give a detailed argument for why
√
nR(F̂n − F ) becomes negligible.

4. Let X1, . . . , Xn
ind∼ F with density f . Let ξτ1 , ξτ2 be the τ1, τ2 quantiles of F , with 0 < τ1 < τ2 < 1.

(a) Use von Mises expansions to find ϑ such that

√
n[(ξ̂τ2 − ξ̂τ1)− (ξτ2 − ξτ1)]→ Normal(0, ϑ)

in distribution as n→∞.

(b) Note that evaluations of the density f appear in the expression for ϑ. Consider replacing f with a
kernel density estimate f̂n (under some choice of bandwidth h) and replacing F−1(τ1) and F−1(τ2)
with X(dτ1ne) and X(dτ2ne), respectively, thereby constructing an estimator ϑ̂ of ϑ. Give the form

of an asymptotic (1 − α)100% CI for ξτ2 − ξτ1 , assuming that your estimator ϑ̂ is a consistent
estimator of ϑ.

(c) Choose a distribution F which is highly non-Normal. Then, for some small sample size n (say
between 20 and 50), draw 500 data sets, and with each data set construct the confidence interval
you described in part (b) for the IQR (the 0.75 quantile minus the 0.25 quantile). Specifically:

i. Make a plot showing the true density f corresponding to your distribution F . Indicate the
0.25 and 0.75 quantiles.



ii. Report the proportion of times the confidence interval contained the true IQR.

iii. Include your R code.

Note that you must choose a bandwidth for estimating f . You may simply use the density()

function in R to do this if you wish, which has a default way of selecting a bandwidth.

(d) Now consider using the bootstrap to estimate the sampling distributions of the quantities

√
n[(ξ̂τ2 − ξ̂τ1)− (ξτ2 − ξτ1)] and

√
n

[(ξ̂τ2 − ξ̂τ1)− (ξτ2 − ξτ1)]√
ϑ̂

,

that is, of the unstudentized and studentized pivots. Do the following:

i. Describe how you construct the bootstrap version of each pivot quantity.

ii. Generate 100 data sets (under the same settings as before) and compute bootstrap-based CIs
for the IQR using based on the unstudentized and studentized pivots. Use 500 Monte Carlo
draws to approximate the bootstrap distributions.

iii. Report the coverages of these intervals and compare them to that of the non-bootstrap con-
fidence interval from the previous part. Turn in code.

5. (a) Give a set of residuals ε̂1, . . . , ε̂n, consider generating wild bootstrap residuals ε∗n, . . . , ε
∗
n as follows:

First generate U∗1 , . . . , U
∗
n as independent Beta(1/2,3/2) rvs. Then set ε∗i = ε̂i · 4(U∗i − 1/4) for

i = 1, . . . , n. Show that

E∗[ε∗i ] = 0

E∗[(ε∗i )2] = ε̂2i
E∗[(ε∗i )3] = ε̂3i ,

which are the moment conditions prescribed for the wild bootstrap in [1].

(b) Consider the linear regression model Yi = β1Xi1 + β2Xi2 + εi for i = 1, . . . , n, where ε1, . . . , εn
are independent rvs such that with Eεi = 0 and Eε2i = σ2

i for i = 1, . . . , n. More precisely, let
(X11, X12, Y1), . . . , (Xn1, Xn2, Yn) come from the data generating process in the following code:

n <- 30

rho <- .5

X1 <- rnorm(n)

X2 <- rnorm(n,rho*X1,1 - rho^2)

X <- cbind(X1 - mean(X1),X2 - mean(X2))

error <- rgamma(n,.5,scale = 1/(1 + exp(-X[,1]))) - .5 * 1/(1 + exp(-X[,1]))

beta <- c(1,2)

Y <- as.numeric(X %*% beta) + error - mean(error)

Letting β = (β1, β2)
T and β̂n be the least squares estimator of β, consider, for a vector c ∈ R2

the pivot √
ncT (β̂n − βn)/σ̂c, (1)

where, letting X be the n × 2 matrix with rows (Xi1, Xi2), i = 1, . . . , n, and ε̂1, . . . , ε̂n be the
least-squares residuals,

σ̂2
c = n · cT (XTX)−1XT · diag(ε̂21, . . . , ε̂

2
n) ·X(XTX)−1c.
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i. Give an expression for the variance of
√
ncT β̂n.

ii. Give the form of an asymptotic (1 − α) × 100% CI for cTβ, assuming that the pivot in (1)
converges in distribution to a standard Normal random variable.

iii. Generate 500 data sets as in the R code above, and for a vector c of your choosing, build 95%
confidence intervals for cTβ with each of the 500 data sets. Record the proportion of times
the confidence interval captured the true value of cTβ.

iv. Do the same thing, but this time build a confidence interval using the wild bootstrap pivot√
ncT (β̂

∗
n − β̂n)/σ̂∗c with the bootstrap residuals considered in the first part; use

(σ̂∗c )
2 = n · cT (XTX)−1XT · diag((ε̂∗1)

2, . . . , (ε̂∗n)2) ·X(XTX)−1c.

On each data set, draw 500 bootstrap samples. Record the coverage of the wild bootstrap
confidence interval.

6. Import the lidar data set from the R package SemiPar and consider a nonparametric regression of
logratio on range.

(a) Fit a penalized splines estimator using leave-one-out crossvalidation to choose the level of pe-
nalization towards smoothness. Use a large number of spline functions in the basis so that the
penalized spline estimator will be approximately the same as the smoothing spline estimator.

(b) Use the tube-formula approach described in Lecture 11 to build a 95% confidence band for the
true function, allowing for heterscedastic error term variances. Make plots similar to the ones
below, showing the CV output and the fitted function with the confidence band (these are the
plots from my analysis; yours should look similar).
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