Overview of the Two-way ANOVA

Factorial, With Replications, Balanced, Fixed Effect

Say there are two factors

Factor A has levels numbered i=1, ... a
Factor C has levels numbered j=1, ... c
and each combination has k=1, ... n replicatons.

The data could be laid out as follows:

Factor A	Factor C							Means for Factor A
▼	<i>j</i> =1		<i>j</i> =2		•••	<i>j</i> = <i>c</i>		lacktriangledown
	y_{111}		y ₁₂₁			<i>y</i> _{1<i>c</i>1}		
<i>i</i> =1	<i>y</i> ₁₁₂	$\overline{y}_{11\bullet}$	y ₁₂₂ ⋮	$\overline{y}_{12\bullet}$	•••	^y 1c2 :	$\overline{y}_{1c\bullet}$	$\overline{y}_{1 \bullet \bullet}$
	y_{11n}		y_{12n}			y_{1cn}		
	y ₂₁₁		y ₂₂₁			<i>y</i> _{2<i>c</i>1}		
<i>i</i> =2	<i>y</i> ₂₁₂	$\overline{y}_{21\bullet}$	у ₂₂₂ :	$\overline{y}_{22\bullet}$	•••	y _{2c2} :	$\overline{y}_{2c\bullet}$	$\overline{y}_{2\bullet\bullet}$
	y_{21n}		y_{22n}			y_{2cn}		
:		: :		:	·		:	:
	<i>y</i> _{<i>a</i>11}		y _{a21}			y_{ac1}		
i=a	y _{a12} :	$\overline{y}_{a1\bullet}$	^y a22 ∶	$\overline{y}_{a2\bullet}$	•••	y _{ac2} ∶	$\overline{y}_{ac\bullet}$	$\overline{y}_{a \bullet \bullet}$
	x_{a1n}		y_{a2n}			y _{acn}		
Means								
for ► Factor C	$\overline{\mathcal{Y}}_{\bullet}$	•1•	\overline{y}	•2•	•••	$\overline{\mathcal{Y}}_{\bullet}$	• C •	$\overline{y}_{\bullet \bullet \bullet}$

The model equation for this two way ANOVA could be written as:

$$y_{ijk} = \mu_{\text{baseline}} + \alpha_i + \gamma_j + (\alpha \gamma)_{ij} + \varepsilon_{ijk}$$
 for $i=1,...a, j=1,...c$, and $k=1,...n$

where the y_{ijk} are the observations

 $\mu_{baseline}$ is the baseline

 α_1 , α_2 , ... α_a are the main effects for the levels of factor A

 γ_1 , γ_2 , ... γ_c are the main effects for the levels of factor C

 $(\alpha \gamma)_{11}$, $(\alpha \gamma)_{12}$,... $(\alpha \gamma)_{21}$,... $(\alpha \gamma)_{ac}$ are the interactions for the combinations of A and C and the ε_{ijk} are the errors that satisfy the conditions of mean equal to 0, equal variances, normality, and independence

The basic ANOVA table could then be written as:

Source	SS	df	MS	F
Between	$SSB = \sum_{i=1}^{a} \sum_{j=1}^{c} \sum_{k=1}^{n} (\overline{y}_{ij\bullet} - \overline{y}_{\bullet\bullet\bullet})^{2}$	ac-1	$MSB = \frac{SSB}{ac - 1}$	$F = \frac{MSB}{MSW}$
► Factor A	$SSA = \sum_{i=1}^{a} \sum_{j=1}^{c} \sum_{k=1}^{n} (\overline{y}_{i \bullet \bullet} - \overline{y}_{\bullet \bullet \bullet})^{2}$	a-1	$MSA = \frac{SSA}{a - 1}$	$F = \frac{MSA}{MSW}$
► Factor C	$SSC = \sum_{i=1}^{a} \sum_{j=1}^{c} \sum_{k=1}^{n} (\overline{y}_{\bullet j \bullet} - \overline{y}_{\bullet \bullet \bullet})^{2}$	c-1	$MSC = \frac{SSC}{c - 1}$	$F = \frac{MSC}{MSW}$
►AC Interaction	SSAC = SSB - SSA - SSC	(ac-1)-(a-1)-(c-1) =(a-1)(c-1)	$MSAC = \frac{SSAC}{(a-1)(c-1)}$	$F = \frac{MSAC}{MSW}$
Within	$SSW = \sum_{i=1}^{a} \sum_{j=1}^{c} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij\bullet})^2$	acn-ac =ac(n-1)	$MSW = \frac{SSW}{ac(n-1)}$	
Total	$TSS = \sum_{i=1}^{a} \sum_{j=1}^{c} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{\bullet \bullet \bullet})^2$	acn-1		

The formulas in this ANOVA table can be simplified to the following:

Source	SS	df	MS	F
Between	$SSB = n \sum_{i=1}^{a} \sum_{j=1}^{c} (\overline{y}_{ij} - \overline{y}_{\bullet \bullet \bullet})^{2}$	ac-1	$MSB = \frac{SSB}{ac - 1}$	$F = \frac{MSB}{MSW}$
► Factor A	$SSA = nc \sum_{i=1}^{a} (\overline{y}_{i \bullet \bullet} - \overline{y}_{\bullet \bullet \bullet})^{2}$	a-1	$MSA = \frac{SSA}{a - 1}$	$F = \frac{MSA}{MSW}$
► Factor C	$SSC = na \sum_{j=1}^{a} (\overline{y}_{\bullet j \bullet} - \overline{y}_{\bullet \bullet \bullet})^{2}$	c-1	$MSC = \frac{SSC}{c - 1}$	$F = \frac{MSC}{MSW}$
► AC Interaction	$SSAC = n \sum_{i=1}^{a} \sum_{j=1}^{c} (\overline{y}_{ij\bullet} - \overline{y}_{i\bullet\bullet} - \overline{y}_{\bullet j\bullet} + \overline{y}_{\bullet\bullet\bullet})^{2}$	$\begin{vmatrix} ac - a - c + 1 \\ = (a - 1)(c - 1) \end{vmatrix}$	$MSAC = \frac{SSAC}{(a-1)(c-1)}$	$F = \frac{MSAC}{MSW}$
Within	$SSW = \sum_{i=1}^{a} \sum_{j=1}^{c} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{ij\bullet})^2$	acn-ac =ac(n-1)	$MSW = \frac{SSW}{ac(n-1)}$	
Total	$TSS = \sum_{i=1}^{a} \sum_{j=1}^{c} \sum_{k=1}^{n} (y_{ijk} - \overline{y}_{\bullet \bullet \bullet})^2$	acn-1		

Notice that there are four F statistics (each of which has its own p-value).

The null hypotheses tested by these F statistics are:

Between (Omnibus Test)
$$H_0$$
: $\alpha_I = \ldots = \alpha_A$ and $\gamma_I = \ldots = \gamma_c$ and $(\alpha \gamma)_{11} = (\alpha \gamma)_{12} = \ldots = (\alpha \gamma)_{21} = \ldots = (\alpha \gamma)_{ac}$

Factor A (Factor A has no effect)
$$H_0$$
: $\alpha_1 = \alpha_2 = ... = \alpha_a$

Factor C (Factor C has no effect)
$$H_0$$
: $\gamma_1 = \gamma_2 = ... = \gamma_c$

Interaction AC (No Interactions)
$$H_0$$
: $(\alpha \gamma)_{11} = (\alpha \gamma)_{12} = ... = (\alpha \gamma)_{21} = ... = (\alpha \gamma)_{ac}$

The reason that these various F-tests test the hypotheses we want can be seen by looking at the expected values of the mean squares. <u>If</u> we write the model so that the baseline sets the α , γ , and interactions to have mean zero, then the expected mean squares can be written as:

$$E(MSB) = \sigma_{\varepsilon}^{2} + \frac{cn}{ac - 1} \sum_{i=1}^{a} \alpha_{i}^{2} + \frac{an}{ac - 1} \sum_{j=1}^{c} \gamma_{i}^{2} + \frac{n}{ac - 1} \sum_{i=1j=1}^{a} \sum_{j=1}^{c} (\alpha \gamma)_{ij}^{2}$$

$$E(MSA) = \sigma_{\varepsilon}^{2} + \frac{cn}{a - 1} \sum_{i=1}^{a} \alpha_{i}^{2}$$

$$E(MSC) = \sigma_{\varepsilon}^{2} + \frac{an}{c - 1} \sum_{j=1}^{c} \gamma_{i}^{2}$$

$$E(MSAC) = \sigma_{\varepsilon}^{2} + \frac{n}{(a - 1)(c - 1)} \sum_{i=1j=1}^{a} \sum_{j=1}^{c} (\alpha \gamma)_{ij}^{2}$$

$$E(MSW) = \sigma_{\varepsilon}^{2}$$

So, to test that there is no effect due to factor A, we would need to cancel out the σ_{ε}^2 in the E(MSA). We could do this by dividing the MS_A by the MSW, which is exactly what happens in the ANOVA table. The other tests are made similarly.

Note 1: If we use the baseline/control-case constraints (or any constraint besides the sum to zero ones) the above expected mean squares will be slightly different; replace α_i with $(\alpha_i - \overline{\alpha}_{\bullet})$, γ_j with $(\gamma_j - \overline{\gamma}_{\bullet})$, and $(\alpha \gamma)_{ij}$ with $((\alpha \gamma)_{ij} - (\overline{\alpha \gamma})_{i\bullet} - (\overline{\alpha \gamma})_{\bullet j} + (\overline{\alpha \gamma})_{\bullet \bullet})$. The hypotheses being tested are the same. Notice what happens to these formulas if the sum to zero constrains are used.

Note 2: The basic rules (how to make the MS and F) for higher-way ANOVA tables are the same as for the One-way ANOVA. The only major difference is that we are splitting up the SSB.

Note 3: The construction of a three-way ANOVA table works similarly to that of the above two-way table. There are a variety of books on ANOVA and design of experiments that give the formulas if you need them.

<u>Note 4:</u> The formulas in the ANOVA table above, and the argument about the F tests, <u>only work if the design is Factorial, With Replications,</u> Balanced, and Fixed Effect