Overview of the Two-way ANOVA

Factorial, With Replications, Balanced, Fixed Effect

Say there are two factors

Factor A has levels numbered i=1, ... a Factor C has levels numbered j=1, ... c and each combination has $k=1$, ... n replicatons.

The data could be laid out as follows:

The model equation for this two way ANOVA could be written as:

$$
y_{ijk} = \mu_{\text{baseline}} + \alpha_i + \gamma_j + (\alpha \gamma)_{ij} + \varepsilon_{ijk}
$$
 for $i=1,...a, j=1,...c$, and $k=1,...n$

where the y_{ijk} are the observations

µbaseline is the baseline

 $\alpha_1, \alpha_2, \ldots \alpha_a$ are the main effects for the levels of factor A

 $\gamma_1, \gamma_2, \ldots \gamma_c$ are the main effects for the levels of factor C

 $({\alpha \gamma})_{11}$, $({\alpha \gamma})_{12}$,... $({\alpha \gamma})_{21}$,... $({\alpha \gamma})_{ac}$ are the interactions for the combinations of A and C

and the ϵ_{ijk} are the errors that satisfy the conditions of mean equal to 0, equal variances, normality, and independence

The basic ANOVA table could then be written as:

The formulas in this ANOVA table can be simplified to the following:

Notice that there are four F statistics (each of which has its own p-value). The null hypotheses tested by these F statistics are:

Between (Omnibus Test) Factor A (Factor A has no effect)

Factor C (Factor C has no effect)

Interaction AC (No Interactions)

H₀:
$$
\alpha_1
$$
=... = α_A and γ_1 =... = γ_c and $(\alpha \gamma)_{11}$ = $(\alpha \gamma)_{12}$ =... = $(\alpha \gamma)_{21}$ =... $(\alpha \gamma)_{ac}$
\nH₀: γ_1 = γ_2 =... = γ_c
\nH₀: $(\alpha \gamma)_{11}$ = $(\alpha \gamma)_{12}$ =... = $(\alpha \gamma)_{21}$ =... $(\alpha \gamma)_{ac}$

The reason that these various *F*-tests test the hypotheses we want can be seen by looking at the expected values of the mean squares. **If** we write the model so that the baseline sets the α , γ , and interactions to have mean zero, then the expected mean squares can be written as:

$$
E(MSB) = \sigma_{\mathcal{E}}^{2} + \frac{cn}{ac - 1} \sum_{i=1}^{a} \alpha_{i}^{2} + \frac{an}{ac - 1} \sum_{j=1}^{c} \gamma_{i}^{2} + \frac{n}{ac - 1} \sum_{i=1}^{a} \sum_{j=1}^{c} (\alpha \gamma)_{ij}^{2}
$$

\n
$$
E(MSA) = \sigma_{\mathcal{E}}^{2} + \frac{cn}{a - 1} \sum_{i=1}^{a} \alpha_{i}^{2}
$$

\n
$$
E(MSC) = \sigma_{\mathcal{E}}^{2} + \frac{an}{c - 1} \sum_{j=1}^{c} \gamma_{i}^{2}
$$

\n
$$
E(MSAC) = \sigma_{\mathcal{E}}^{2} + \frac{n}{(a - 1)(c - 1)} \sum_{i=1}^{a} \sum_{j=1}^{c} (\alpha \gamma)_{ij}^{2}
$$

\n
$$
E(MSW) = \sigma_{\mathcal{E}}^{2}
$$

So, to test that there is no effect due to factor A, we would need to cancel out the σ_{ϵ}^2 in the E(MSA). We could do this by dividing the MS_A by the MSW, which is exactly what happens in the ANOVA table. The other tests are made similarly.

Note 1: If we use the baseline/control-case constraints (or any constraint besides the sum to zero ones) the above expected mean squares will be slightly different; replace α_i with $(\alpha_i - \overline{\alpha}_\bullet)$, γ_j with $(\gamma_j - \overline{\gamma}_\bullet)$, and $(\alpha \gamma)_{ij}$ with $((\alpha \gamma)_{ij} - (\alpha \gamma)_{i\bullet} - (\alpha \gamma)_{i\bullet} + (\alpha \gamma)_{i\bullet})$. The hypotheses being tested are the same. Notice what happens to these formulas if the sum to zero constrains are used.

Note 2: The basic rules (how to make the MS and F) for higher-way ANOVA tables are the same as for the One-way ANOVA. The only major difference is that we are splitting up the SSB.

Note 3: The construction of a three-way ANOVA table works similarly to that of the above two-way table. There are a variety of books on ANOVA and design of experiments that give the formulas if you need them.

Note 4: The formulas in the ANOVA table above, and the argument about the F tests, only work if the design is Factorial, With Replications, Balanced, and Fixed Effect