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Abstract

We model the distribution of normalized interpoint distances (IDs) on the
minimal spanning tree (MST) using multivariate beta vectors. We define
overlapping sums of the components of a Dirichlet distribution to construct
multivariate beta distributions. We also use a multivariate normal copula
with beta marginals to define beta vectors. Based on the ordered IDs of
the MST, we define a multivariate Gini index to measure their scatter. A
simulation study compares the Gini index, the maximum and the range of
the IDs with the results of modeling the distances on the MST.
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1 Introduction

The goal of this article is to model the distribution of normalized IDs on the minimal

spanning tree (MST) using beta random vectors. The MST is a multivariate technique

that helps one visualize the observations in Rp, identify any clusters, the central

vertices and observations at the outskirts of the distribution. We are interested in

the sampling distribution of various statistics on the MST. We denote a random

data matrix by X = (X1, . . . ,Xn) where Xi is an independent p-dimensional random

vector with distribution function (DF) F . We represent the observations of a random

sample in Rp with vertices of a complete weighted graph G. A sample is denoted

by x = (x1, . . . ,xn), which is also used to represent the set of vertices in the graph.

A weighted and connected simple graph G has a set of vertices v(G) = x and a set

of edges e(G) = {(xi,xj)|1 ≤ i < j ≤ n} ⊂ v × v. We also associate a weight

w(G) : e(G) 7→ R+ with every edge of G. The weight of an edge is the squared

Euclidean distance between the two vertices it connects. The squared interpoint

distance between Xi and Xj is defined by (Xi −Xj)
′(Xi −Xj) for 1 ≤ i < j ≤ n.

A subgraph of G with no cycles, the MST has n−1 edges and connects all vertices

with minimal total weight. The total weight of a tree is sum of the weights of its

edges. The MST is unique if the set of weights contain no ties. There is interest in

obtaining the sampling distribution of various statistics on the MST such as length of

the longest edge for outliers detection (Rohlf, 1975), the diameter of the tree (Addario-

Berry, Broutin and Reed, 2006), the depth of the vertices for ranking observations

on the tree (Small, 1997) or node degrees in the Euclidean maximum spanning tress

(Willemain and Bennett, 2001). The expectation of the desired statistic with respect

to all possible MSTs with vertices that are i.i.d. random vectors with distribution

function F defines the corresponding population parameter on the MST.

Since the distribution of the vertices on the MST depends on F , computer sim-

ulation is a natural method for obtaining the sampling distribution of a statistic of

interest. One performs the following steps a large number of times B to obtain the

simulated distribution of a statistic of interest.
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• Obtain the data matrix X by generating a random sample of size n from F .

• Compute the m = n(n− 1)/2 IDs and build the MST.

• Calculate the value of the MST-based statistic such as the Gini index.

The sampling distribution of the MST-based statistic is based on the B values.

The major drawback of the simulation approach is the computational cost of the

IDs and construction of the MST. While the computational complexity of the MST

is O(n log n) it takes O(pn2) time to compute all IDs. We also need to store the

computed distances before constructing the MST. To side-step the computational

and storage requirements we normalize the edge weights of the MST and model them

with a multivariate beta distribution.

In comparison, the methods we discuss are based on estimating the

parameters of the model by T runs of the simulation algorithm where T is

much smaller then B. For example, the copula method uses the probability

integral transformation to induce univariate beta marginal distributions

on the components of a multivariate normal copula to generate a beta

vector of the normalized IDs. The Dirichlet interpoint distance method

fits a Dirichlet distribution to the normalized IDs. In both cases, the

parameters of the beta vector are estimated by T runs of the simulation

algorithm. Of course, one needs to consider the cost finding a good fit and

generation of the vectors. There is also the added burden of computing

the correlation of beta vectors, which involves the quantile function of the

beta distribution. However, once a good model is estimated, we are no

longer dependent on the computation of the IDs and construction of the

MST.

The above discussion focuses on simulating an MST to measure various charac-

teristics of the tree structure. However, the approach of modeling the edge weights

applies equally well to other types of proximity graphs. Proximity graphs include the

MST and serve as indispensable tools in disciplines where understanding of shape and
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structure are vital, including visual perception, computer vision and pattern recog-

nition, geography, and biology. The MST, the Delaunay Triangulation, the relative

neighborhood graph (Toussaint, 1980), and the Gabriel Graph (Gabriel and Sokal,

1969) are prominent representatives of proximity graphs.

There are existing multivariate modeling methods for general tree struc-

tures. For example, Kirshner (2008) proposed a tree–structured copula of

multivariate distributions with uniform marginal. This model can approx-

imate distributions with complex variable dependencies. Ma et al. (2012)

proposed a nonparametric estimation algorithm for dependence tree struc-

ture learning via copula. Diimann et al. (2013) also discussed vine copula

for multivariate modeling using a tree. A tree-structured dependence is

sometime too restrictive. A richer dependence structure can be obtained

by averaging over all possible or a sample of the tree structures. Pa-

rameter estimation for tree-structured and tree-averaged models requires

optimization over univariate and bivariate densities. These steps can be

costly. In comparison, the beta marginals and normal copula methods

enjoy simplicity and ease of implementation. However, the normal copula

model has shortcomings, as we discuss in Section 3.

In the next Section, we discuss modeling the MST in order to obtain

the sampling distribution of the Gini index, the range of the IDs and the

length of the longest edge on the MST. Section 3 investigates methods of

obtaining beta vectors that are used to model the MST. These methods

are are compared using Monte Carlo simulation in Section 4.

2 Modeling the MST

Since the MST provides a unique path that connects all vertices with minimal total

weight, it finds applications in diverse areas such as biological systems (Dussert et al,

1986), two-sample problems (Friedman and Rafsky, 1979; Modarres, 2008), outliers

and hotspot detection (Patil and Taillie, 2004), among others. There are well-known
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connections between the MST and the single-linkage clustering algorithm (Gower and

Ross, 1969). The MST is defined and is useful for high dimensional data visualization

and robust estimation since it only depends on the IDs. Interpoint distances are

the building blocks of the MST and remain invariant after an affine (orthogonal)

transformation, depending on whether Mahalanobis or Euclidean distances are used.

In fact, the maximal invariant statistic under affine invariance is the set of all pairwise

distances.

Rohlf (1975) proposes a gap test for the detection of multivariate outliers using the

MST. Caroni and Prescott (1995, 2002) question the assumption of the independence

of the edge lengths on the MST. It is not difficult to show that two IDs that

share a common vertex are dependent (Modarres, 2014). Moreover, the MST

is based on selecting the minimum distances among m IDs, so that many distances

that appear on the MST are dependent.

Prim (1957) and Kruskal (1956) provide two well-known algorithms for building an

MST. Prim’s algorithm, given a vertex set x and an edge set E, constructs the MST

by starting with an empty vertex set x∗ and edge set E∗. We start with an arbitrary

vertex in x∗. Maintaining a tree at all stages, the algorithm proceeds to identify

the shortest edge from x to x∗. This edge is next added to E∗. The corresponding

vertex is removed from vertex x and added to x∗. The algorithm terminates when

all vertices are in x∗. Kruskal’s algorithm constructs the MST by iteratively adding

the next shortest edge that does not creates a cycle to the tree. The algorithm ends

when all n− 1 edges are found. The major difference between the two algorithms is

that Prim’s maintains a connected tree in all stage of construction while Kruskals’

algorithm deals with a forest that eventually merges into a single tree.

In order to model the MST, we will normalize its edge weights. Denote the ordered

squared distances on the MST by e2
1,. . . , e2

n−1, and define the ordered normalized edge

weights with

di =
e2
i∑n−1

i=1 e
2
i

, i = 1, 2, . . . , n− 1.

The normalizing process maps the edge weights in the MST to variables on (0, 1)
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interval to facilitate modeling by a multivariate beta distribution.

To measure the amount of scatter among the distances on the MST

we define a multivariate Gini index on the normalized MST. The empirical

Lorenz curve was proposed by Lorenz (1905) to measure wealth inequality. Suppose

the ordered normalized distances on the MST are denoted with d1 < d2 < . . . < dn−1

and si =
∑i

j=1 di for i = 1, . . . , n− 1. With the initial point at the origin (0, 0), the

Lorenz curve of the normalized distances is the continuous piece-wise function that lin-

early interpolates the points (ui, Ld(ui)) where ui = i
n−1

and Ld(ui) = si/sn−1 for i =

1, . . . , n− 1. The Lorenz curve ordinate of the normalized distance is the scaled par-

tial integral of the inverse empirical distribution function or Ld(u) = 1
µd

∫ u
0
H−1
d (t)dt

where H−1
d (t) is the quantile function and 0 ≤ u ≤ 1. The Lorenz curve is nonde-

creasing with Ld(0) = 0 and Ld(1) = 1. The Lorenz curve can be used to display

the discrepancy between the normalized IDs of the MST. Twice the area between

Ld(u) = u and the Lorenz curve equals the Gini index.

We will next study methods of generating beta random vectors in order to model

the MST and obtain the distribution of Gini index, the range of the IDs and the

length of the longest edge on the MST

3 Multivariate Beta Models

We consider a copula-based method that induces univariate beta marginal distri-

butions on the components of a multivariate normal copula. We also propose two

methods based on the Dirichlet distribution and the ordered Dirichlet distribution.

The proofs for some of the results appear in the Appendix. The univariate beta dis-

tribution naturally arises as the ratio of two independent χ2 random variables. The

strength of the beta distribution lies in its flexibility since its shape can be unimodal,

right-skewed, left skewed or symmetric depending on two parameters. The multi-

variate Dirichlet distribution, defined on the simplex and with negatively correlated

univariate beta marginals, is often used to model dependent proportions.
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The probability density function of the beta distribution with param-

eter a and b is h(z) = 1
B(a,b)

za−1(1 − z)b−1 for 0 ≤ z ≤ 1 and a, b > 0 where

B(a, b) = Γ(a)Γ(b)
Γ(a+b)

. Kotz, Balakrishnan and Johnson (2000) devote a chap-

ter to the exploration of the beta distribution. We use the following

properties to develop beta vectors. If Z has a beta(a, b) distribution,

then 1 − Z ∼ beta(b, a). The Kth moment of the beta distributions, the

Mellin transformation of Z, is E(Zk) = Γ(a+k)Γ(a+b)
Γ(a)Γ(a+b+k)

. Hence, E(Z) = a
a+b

and

Var(Z) = ab
(a+b)2(a+b−1)

.

3.1 Copula Method

The following copula-based method uses the probability integral transformation to

induce univariate beta marginal distributions on the components of a multivariate

normal copula. Suppose Σ is the correlation matrix of the multivariate normal dis-

tribution with distribution function Φ. Let Yi ∼ Np(0,Σ) and Ui = Φ(Yi), where

i = 1, . . . , n. It follows that Ui has a p-variate uniform distribution with correlation

matrix Σ∗, which is slightly different from Σ. Let H−1 be the quantile function of

beta(a,b). We obtain a beta vector by Zi = H−1(Ui) for i = 1, . . . , d.

A linear approximation bivariate normal copula density reveals that the off-diagonal

elements of the correlation matrix Σ of Xi and the correlation matrix Σ∗ of Ui do not

differ by more than 0.05. The proof of the following result appears in the Appendix.

Theorem 1. Let Y = (Y1, Y2, ..., Yp) ∼ N(0,Σ) be a p-dimensional normal ran-

dom vector with mean vector 0 and correlation matrix Σ. If U = (Φ(Y1),Φ((Y2)

, ...,Φ(Yp)), then Corr(Uj, Uk) ≈ 3
π
Corr(Yj, Yk).

Let ρij be an element of Σ and ρ∗ij be an element of Σ∗ for i 6= j = 1, . . . , d. It is

well-known that ρ∗ij = 6
π

arcsin(
ρij
2

). Thus, if we want to obtain a vector of uniform

variables with correlation matrix which is exactly the same with Σ, we can first

generate correlated normal variates with correlation matrix Σ̃ = 2 sin
(
π
6
Σ
)
. Note

that Σ̃ is not guaranteed to be positive definite even when Σ is positive definite.
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Li and Hammond (1975) present a general method for generating a

random vector with prescribed marginal probability distributions and cor-

relation matrix. They develop a numerical algorithm to determine the

correlation of the induced beta variates. The algorithm in their equation

(8) requires the quantile function of the beta variates.

3.2 Dirichlet Normalized Interpoint Distances

Suppose Wi ∼ Γ(ai, 1) for i = 0 . . . d are independent where 0 < Wi < ∞ and let

W =
∑p

i=0Wi. By the additive property of gamma variables, it follows that W ∼
Γ(
∑p

i=0 ai, 1). For i = 1 . . . d, if we set Yi = Wi/W , then (Y1 . . . Yp) has a Dirichlet

distribution with parameters (a1, a2, . . . , ap). Note that
∑p

i=0 Yi = 1 and 0 ≤ Yi ≤ 1.

If (Y1, Y2, . . . , Yp) has a Dirichlet distribution, then the marginal distribution of Yi is

beta(ai, a− ai), where a =
∑p

i=1 ai. The expectation, variance and covariance of the

marginal distributions are E(Yi) = ai/
∑
ai, Var(Yi) = ai(a−ai)

a2(a+1)
, and Cov(Yi, Yj) =

−aiaj
a2(a+1)

, respectively. In fact, the sum of any subset of (Y1, Y2, . . . , Yp) still has a beta

distribution. That is,
∑

i∈A Yi ∼ beta(
∑

i∈A ai, a −
∑

i∈A ai) where A can be any

subset of S = {1, 2, 3 . . . , d}.
Since the sum of the marginal variables of a Dirichlet distribution has a beta distri-

bution, we can construct correlated variables that share common marginal variables.

For example, assume Y1 and Y2 are marginal variables from a Dirichlet distribu-

tion. Define S1 = Y1 and S2 = Y1 + Y2 and note that S1 ∼ beta(a1, a − a1) and

S2 ∼ beta(a1 + a2, a− a1− a2). It follows that Cov(S1, S2) = a1(a−a1−a2)
a2(a+1)

. The general

case is stated below.

Property 1. If Yi are the marginal variables from the Dirichlet distribution with

parameters (a1, a2, . . . , ap), then Si =
∑

i∈Ap
Yi is distributed as beta[(

∑
i∈Ap

ai), (a−∑
i∈Ap

ai)] and Sj =
∑

i∈Aq
Yj is distributed as beta[(

∑
i∈Aq

ai), (a−
∑

i∈Aq
ai)], where

Ap, Aq ⊆ S = {1, 2, 3, . . . , d}. If Ap ∩ Aq 6= ∅, then Si and Sj are correlated.

Table 1 provides several examples of Si and Sj, where Yi’s are are marginal vari-

ables of the Dirichlet distribution. The correlation coefficients of Si and Sj can be
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positive or negative.

S1 S2 Dir(2, 4, 7, 3) Dir(0.2, 0.2, 0.5, 0.5) Dir(1, 4, 0.2, 0.6)

Y1 Y1 + Y2 0.500 0.650 0.163

Y1 Y1 + Y2 + Y3 0.245 0.296 0.147

Y1 Y1 + Y2 + Y3 + Y4 0.049 0.069 0.005

Y1 + Y2 Y1 + Y2 + Y3 + Y4 -0.013 0.044 0.054

Y1 + Y2 Y2 + Y3 + Y4 -0.500 -0.650 -0.164

Y2 + Y3 Y2 + Y3 + Y4 0.537 0.431 0.721

Table 1: Correlations of overlapping sums from the Dirichlet distribution

3.3 Ordered Dirichlet distribution

Wilks (1962) introduced the p-variate ordered Dirichlet distribution with probability

density

f(z1, z2, . . . , zp) =
Γ
(∑p+1

i=1 θi
)∏p+1

i=1 Γ(θi)

p+1∏
i=1

(zi − zi−1)θi−1,

where z0 = 0, zp+1 = 1, 0 < zi−1 < zi < 1, i = 1, . . . , p and θi > 0 for i =

1, . . . , p + 1. While the Dirichlet distribution is defined on a simplex, the ordered

Dirichlet distribution is defined on the upper pyramidal cross section of the unit hyper

cube. The support of a bivariate Dirichlet distribution is 0 ≤ z1 + z2 ≤ 1 and

the support of a bivariate ordered Dirichlet distribution is 0 ≤ z1 ≤ z2 ≤ 1.

A parameterization of the Dirichlet distribution by van Dorp and Mazzuchi (2003)

is more insightful when we consider the Ordered Dirichlet (OD) distribution. Let

β =
∑p+1

i=1 θi and αi = θi
β

for i = 1, . . . , p. Let c1 =
∏p

i=1 Γ(βαi) and c2 =

Γ (β(1−
∑p

i=1 αi)). The probability density of the ordered Dirichlet distribution can

be represented as

Γ(β)

c1c2

zβα1−1
1

{
p∏
i=2

(zi − zi−1)βαi−1

}
(1− zp)β(1−

∑p
i=1 αi)−1.
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Hence, Z = (Z1, Z2, . . . , Zp) has an OD(α, β) distribution, where α = (α1, α2, . . . , αp).

Furthermore, Zi has a beta(
∑i

k=1 αk, β) distribution. One can show the correlation

coefficient of any two marginal variables is Corr(Zi, Zj) =

√∑i
k=1 αk(1−

∑j
t=1 αt)∑j

k=1 αk(1−
∑i

t=1 αt)
> 0.

Property 2. Suppose Yi ∼ beta(ai, bi), for i = 1, 2, . . . , d, where bi = bi−1 + ai−1.

Let Zi = 1−Y1

∏i
j=2(1−Yj) where Z1 = 1−Y1. The vector Z = (Z1, Z2, . . . , Zp) has

beta marginals, i.e., Zi ∼ beta(b1 +
∑i

j=2 aj, a1) where 0 < Z1 < Z2 . . . < Zp < 1.

4 Monte Carlo Study

We report on a Monte Carlo study designed to assess the effectiveness of beta gen-

eration methods for modeling the edge weights of the MST. We compare normal

copula and the Dirichlet generation methods and use the simulated distribution as

the gold-standard.

One can use simulation to obtain the sampling distribution of normalized dis-

tances. We generate random samples of 10 observations from N2(0, I) and use the

Kruskal’s algorithm to find the MST. We fit each normalized distance nu-

merically with a beta distribution by minimizing a goodness of fit dis-

tance defined by Cramér-von Mises criterion. In order to assess the

fit, we performed the Anderson-Darling, the Cramér-von Mises, and the

Kolmogorov-Smirnov goodness of fit tests on each fitted beta distribution.

These tests confirm that beta distribution provides a good model in all

cases. Alternatively, one can compute the maximum likelihood estimates

of the distribution parameters with the R base optim. Direct optimization

of the log-likelihood is performed with the Nelder-Mead method for dis-

tributions characterized by more than one parameter. Both methods of

fit give similar and results. The folllowing discussion is based on estimates

obtained by the goodness of fit. In Figure ??, we show the histograms of

the ordered distances d1 through d9 on the MST. The curves of fitted beta

distribution is displayed in dotted lines, which demonstrates a good match for the
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marginal variables. The goodness of overall visual fit is confirmed by Table ??.

We use the Dirichlet distribution to model the n − 1 normalized edge

weights, d1, . . . , d9, on the MST. For the ith variable, the mean of the

Dirichlet distribution is given by ai/a where a =
∑
ai. We denote the

sample mean of the ith edge using T runs with d̄i and set d̄i = ai/a to

determine âis. The solution is not unique, and we impose a constraint of

a = 100 to force a unique solution. This choice of a = 100 works well and

the Dirichlet method gives good performance under this constraint.

We repeat the experiment with samples of 10 observations from Log-normal2(0, I).

In Figure ??, we plot 9 marginal variables from the shortest edges to the longest edges

and fit a beta distribution for each marginal variable. The beta distribution fits the

marginal variables well, even though the assumption is changed. In Table ??, the

three statistics and the modeling methods are compared side by side in terms of

expectation and variance.

For the copula-based method, we use the normal copula and probability

integral transformation to model edges of the MST. We generate 10 obser-

vations from N2(0, I), constructed the MST and obtained d = (d1, d2, . . . , d9).

To induce the dependency structure, we formed Y = S1/2d, where S is the

covariance matrix of the 9 nine normalized edges weights obtained by T

simulation runs (see below). We then apply probability integral transfor-

mation to obtain correlated uniform vectors as explained in Section 3.1.

Finally, we utilize the inverse beta function to generate a beta vector.

We obtain estimates of the parameters by T runs of the simulation algorithm

described in the introduction where T is much smaller then B. For example, if

one typically uses B = 10000 runs, we use T = 50 runs to estimate the

parameters. We judge the performance of the two methods above by a) the MST-

based Gini index, b) MST-based range of the IDs and c) the length of the longest

edge on the MST. We also examine the performance of beta marginals, which is

independent of correlation structure. We replicate the experiment 1000 times and

report the mean and variance of the statistics.
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The mean and variance of these three statistics of interest appear in Tables ??

and ??. It is clear that the marginal beta distributions provide good substitutes

for the simulated distributions of the IDs on the MST. The resulting distributions of

statistics Gini index, the longest edge and the range, using the beta marginals also

provide good approximations to simulated distribution. Density plots of the three

statistics of interest are provided in the top three panels of Figures ?? and ??,

where the dotted lines denote simulated distribution and the solid lines designate the

fitted beta marginals.

The above simulation study shows that the normal copula model with beta marginals

provides the best overall model for the distribution of the IDs on the minimal span-

ning tree when the observations (vertices) follow a normal or log-normal distribution.

It is noteworthy that the copula method suffers from two disadvantages.

First, as noted earlier, Σ̂ may not be positive definite. While it has a nu-

merical solution, the computation of the correlations of the induced Beta

vector is an added burden to modeling the normalized MST. More com-

plex tree-structure modeling techniques such as the methods proposed by

Kirshner (2008) and Diimann et al. (2013) are available in cases when a

good fit is not available by the method of beta marginals .
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Figure 1: Histograms of the ordered distances d1, . . . , d9 from N2(0, I).
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Figure 2: Histograms of the ordered distances d1, . . . , d9 from Log-Normal2(0, I).
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Figure 3: Normal observations: Density plots for fitted beta (top panels), Dirichlet

(middle panels) and the normal copula (bottom panels) methods. From left to right:

the density plots of Gini index, the longest edges and the range. Dotted lines show

the simulated model.
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Figure 4: Log-Normal observations: Density plots for fitted beta (top panels), Dirich-

let (middle panels) and the normal copula (bottom panels) methods. From left to

right: the density plots of Gini index, the longest edges and the range. Dotted lines

show the simulated model.
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Distance SM Mean Beta Mean SM Variance Beta Variance

d1 0.0366 0.0355 0.00035 0.00029

d2 0.0570 0.0556 0.00035 0.00029

d3 0.0742 0.0728 0.00027 0.00027

d4 0.0892 0.0881 0.00026 0.00025

d5 0.1046 0.1037 0.00022 0.00023

d6 0.1210 0.1205 0.00022 0.00024

d7 0.1405 0.1406 0.00030 0.00033

d8 0.1662 0.1676 0.00051 0.00057

d9 0.2111 0.2153 0.00164 0.00221

Table 2: Normal observations: Simulated model (SM) and the fitted beta distribution

(Beta) for the MST distances.
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Distance SM Mean Beta Mean SM Variance Beta Variance

d1 0.0213 0.0229 0.00019 0.00021

d2 0.0342 0.0362 0.00026 0.00031

d3 0.0455 0.0490 0.00036 0.00038

d4 0.0580 0.0611 0.00046 0.00048

d5 0.0731 0.0774 0.00062 0.00081

d6 0.0931 0.0969 0.00093 0.00095

d7 0.1237 0.1283 0.00140 0.00151

d8 0.1826 0.1790 0.00301 0.00262

d9 0.3685 0.3527 0.01872 0.01554

Table 3: Log-Normal observations: Simulated model (SM) and the fitted beta distri-

bution (Beta) for the MST distances.

Gini index Longest edge Range

Mean Variance Mean Variance Mean Variance

Simulated Model 0.272 0.0053 0.215 0.0022 0.180 0.0030

Beta Marginals 0.270 0.0015 0.210 0.0017 0.173 0.0020

Dirichlet method 0.312 0.0011 0.276 0.0017 0.238 0.0018

Normal copula 0.270 0.0045 0.211 0.0017 0.176 0.0024

Table 4: Normal observations: Simulated Model, fitted beta distributions, Dirichlet

and the normal copula methods for the Gini index, the longest edge, and the range

of the MST interpoint distances.
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Gini index Longest edge Range

Mean Variance Mean Variance Mean Variance

Simulated Model 0.450 0.0151 0.368 0.0187 0.347 0.0206

Beta Marginals 0.442 0.0045 0.357 0.0167 0.334 0.0167

Dirichlet method 0.560 0.0077 0.346 0.0200 0.322 0.0237

Normal copula 0.440 0.0120 0.352 0.0154 0.329 0.0170

Table 5: Log-Normal observations: simulated model, fitted beta distributions, Dirich-

let and the normal copula methods for the Gini index, the longest edge, and the range

of the MST interpoint distances.

Appendix

Proof of Theorem 1: We show that the Theorem holds for bivariate normals

and the proof for general p-dimensional multivariate normals follows. Let ρ =

Corr(Y1, Y2). Consider the Mehler’s series (Kibble, 1945) φ(y1, y2) = φ(y1)φ(y2)
{

1 +∑∞
t=1

1
t!
ρtHt(y1)Ht(y2)

}
, where φ(y1, y2) is the p.d.f. of standard bivariate normals,

φ(y1) is the p.d.f. of univariate standard normal and Ht is the t-th Hermite polyno-

mial. It follows that

E
[
Φm(y1)Φn(y2)

]
=

1

m+ 1

1

n+ 1
+
∞∑
t=1

1

t!
ρtijE

[
Φm(y1)Ht(y1)

]
E
[
Φn(y2)Ht(y2)

]
. (1)

Substituting Equation (??) when n = m = 1 into Cov(U1, U2) = E[U1U2] − 1
4
, one

obtain Cov(U1, U2) =
∑∞

t=1
1
t!
ρtE2

[
Φ(y1)Ht(y1)

]
.

There is no closed form solution for E
[
Φ(y1)Ht(y1)

]
. Let T (t) = E2

[
Φ(y1)Ht(y1)

]
.

We use a 20-degrees Hermite-Gauss quadrature to obtain the numerical values T (1) =

1, T (2) = −5.2E-9, T (3) = −0.14104, and T (4) = −2.4E-7. The terms T (2) and T (4)

are practically zero while | 1
3!
ρ3T 2(3)| ≤ 0.003. Hence, it is suitable to use a first order

approximation for E2
[
Φ(y1)Ht(y1)

]
. That is, Cov(U1, U2) ≈ ρE2

[
Φ(y1)H1(y1)

]
where

the first order Hermite polynomial is H1(y) = y. One observes that if Y ∼ N(0, 1),
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then E[Y Φ(Y )] = 1
2
√
π

and Cov(U1, U2) ≈ ρE2
[
Φ(y1)y1

]
= 1

4π
ρ. Consequently,

Corr(U1, U2) =
Cov(U1, U2)√

Var(U1)Var(U2)
≈ 12

1

4π
ρ =

3

π
ρ ≈ 0.955ρ.

Since |ρ| ≤ 1, the error of the approximation is below 0.05 under the first order

approximation. Furthermore, if ρ = 0, then Corr(U1, U2) = 0. Finally, one observes

that if Y = (Y1, Y2, ..., Yp), then the marginal distribution of (Yi, Yj) is bivariate

normal with correlation matrix
( 1 ρij
ρij 1

)
and the proof for the general p-dimensional

case follows. �

Proof of Property 1

We decompose Ap and Aq as Ap = M ∪ C and Aq = N ∪ C, where C is the over-

lapping set. Note that M ∩ C = ∅ and N ∩ C = ∅. It follows that Si = TM + TC ∼
beta[(

∑
i∈M∪C ai), (a −

∑
i∈M∪C ai)] and Sj = TN + TC ∼ beta[(

∑
i∈N∪C ai), (a −∑

i∈N∪C ai)] are correlated. Each component in the decomposition has a beta dis-

tribution, namely, TM , TN , and TC have beta[θM , a − θM ], beta[θN , a − θN ] and

beta[θC , a − θC ] distributions, respectively, where TM =
∑

i∈M Yi, TN =
∑

i∈N Yi,

TC =
∑

i∈C Yi, θM =
∑

i∈M ai, θN =
∑

i∈N ai and θC =
∑

i∈C ai.

The covariance of Si and Sj is expressed as

Cov(Si, Sj) = E(SiSj)− E(Si)E(Sj)

=

∑
k∈C ak(a−

∑
k∈C ak)

a2(a+ 1)
+

(∑
k∈C ak

a

)2

− 1

a(a+ 1)

(∑
k∈C

∑
j∈N

akaj +
∑
i∈M

∑
k∈C

akai +
∑
i∈M

∑
j∈N

aiaj

)

−
∑

k∈C ak +
∑

i∈M ai

a

∑
k∈C ak +

∑
j∈N aj

a
.

Proof of Property 2

The following property and its generalization appear in Stuart and Ord (1994). If

W1 ∼ beta(a, b) and W2 ∼ beta(a+ b, c) are independent, then

W1W2 ∼ beta(a, b+ c). (2)
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Consider Z1 and Z1(1 − Z2). Since 1 − Z2 ∼ beta(a1 + b1, a2), one can show that

Z1(1− Z2) ∼ beta(a1, b1 + a2) by applying EQ ??. For the remaining terms we have

Z1

∏i
j=2(1−Zj) ∼ beta(a1, b1)

∏i
j=2 beta(bj, aj). Applying EQ ?? again, terms cancel

and we obtain Z1

∏i
j=2(1 − Zj) ∼ beta(a1, b1 +

∑i
j=2 aj). Switching the parameters

and we obtain 1 − Z1

∏i
j=2(1 − Zj) ∼ beta(b1 +

∑i
j=2 aj, a1). Hence, the Zis have

beta marginals.
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