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Simple logistic regression

A 2 × 2 table provides probabilities of an event across two groups p̂1

and p̂2. Often we do not have distinct groups, but rather a

continuous covariate to predict probabilities. For example we might

want to predict the probability of having a heart attack given our age

p̂(x) where x is age in years.

The logistic regression model is for outcomes Yi that are Bernoulli

(“zero-one”) with covariate xi. The probability of success (a “one”)

changes smoothly with the covariate xi, much like the mean µY |X

changes smoothly in the linear regression model.
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Example: From a statistics course I taught to Public Health

students at the University of Minnesota, I recorded whether or not

someone had gone dancing or not during the semester and the

number of years of post high-school education. Here’s the data:

Ed. xi Danc. Yi Ed. xi Danc. Yi Ed. xi Danc. Yi

10 0 6 1 10 1

6 1 8 0 8 1

9 0 5 1 7 1

6 1 7 0 4 1

8 0 7 1 7 1

7 1 8 1 7 1

13 0 10 0 10 0

Yi = 1 for having gone dancing, and Yi = 0 otherwise. xi is the

number of years of post-high school education.
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A plot of the raw data is of limited use; the outcome is zero/one and

there are several overlapping data points.
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We can instead aggregate responses into bins and obtain a plot with

a bit more information.

Let’s define 5 education categories and compute the sample

proportion of those that have gone dancing for each category.

Category Danced Total Proportion

4–5 years 2 2 1.00

6–7 years 8 9 0.89

8–9 years 2 5 0.40

10-11 years 1 4 0.25

12–13 years 0 1 0.00

This helps us tease out whether there’s a real trend in the probability

of dancing with increasing education level.

The proportion of those that have gone dancing decreases with age

category. A plot helps to see this...
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Sample proportions versus education level:
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The observed proportions have an a somewhat linear trend plotted

against education. We could fit a linear regression model (Chapter

12) to the observed proportions, or to the raw zero/one outcome, but

this would allow for dancing probabilities outside the range zero to

one.

Furthermore, the data are clearly not normal, so modeling

assumptions would be invalidated.

A common alternative approach to modeling probabilities of

Bernoulli outcomes is to use a non-linear model for the proportions.

One non-linear model gives logistic regression.

7



The simple logistic regression model

The simple logistic regression model expresses the population

proportion p(x) of individuals with a given attribute (called a

success) as a function of a single predictor variable x. The model

assumes that p is related to x through

log

(

p

1 − p

)

= β0 + β1x,

or, equivalently, as

p(x) =
exp(β0 + β1x)

1 + exp(β0 + β1x)
=

eβ0+β1x

1 + eβ0+β1x
.
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The response Yi for each individual (i.e. a student enrolled in Stat

205) falls into one of two exclusive and exhaustive categories, often

called success (cases with the attribute of interest) and failure (cases

without the attribute of interest).

In many biostatistical applications, the success category is presence

of a disease, or death from a disease.

We write p as p(x) to emphasize that p is the proportion of all

individuals with score x that have the attribute of interest. In the

dancing data, p = p(x) is the population proportion of students with

education x that have gone dancing within the last year.

We will estimate this function from the data to get p̂(x).
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Odds of success

The odds of success are p/(1 − p). For example, the odds of success

are 1 (or 1 to 1) when p = 1/2. The odds of success are 9 (or 9 to 1)

when p = 0.9. The logistic model assumes that the log-odds of

success is linearly related to x (slide 8). Exponentiating both sides:

O(x) =
p(x)

1 − p(x)
= eβ0+β1x.

The logistic regression model allows easy inference about the odds of

success.
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Let’s look at how the odds of success changes when we increase x by

one unit:

O(x + 1)

O(x)
=

p(x + 1)/[1 − p(x + 1)]

p(x)/[1 − p(x)]
=

eβ0+β1(x+1)

eβ0+β1x

=
eβ0+β1xeβ1

eβ0+β1x

= eβ1

When we increase x by one unit, the odds of an event occurring

increases by a factor of eβ1 , regardless of the value of x.

eβ1 is an odds ratio.
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Is dancing associated with education?

A logistic model for these data implies that the probability p of

dancing is related to education through

log

(

p

1 − p

)

= β0 + β1 edu.

A slope of β1 = 0 implies that p does not depend on edu, i.e. the

proportion those that have gone dancing in the last year is identical

across education levels.

However, if β1 6= 0 then you quantify the effect of education on the

probability of dancing.

This is more appealing and useful than just testing homogeneity of

proportions across education groups (as in Chapter 10).
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The logistic regression model can be fit in many statistical packages,
including R, Minitab, SAS, etc. Here is some R output:

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.4177 3.9460 2.387 0.0170

edu -1.1258 0.4906 -2.295 0.0217

We see β̂0 = 9.42 and β̂1 = −1.13.

The p−value for testing H0 : β1 = 0 is 0.0217. Since 0.0217 < 0.05 we

reject H0 : β1 = 0 at the 5% level: there is a significant negative

association between education and dancing.
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You can also find free software to fit logistic regression (and other
analyses such as linear regression, t-tests, etc.) on the web. One nice
set of tools is available at http://www.stattucino.com/. I used this
web-based software to read in dancing.csv (comma-separated text
file) and fit a logistic regression model:

Results:

Logistic Regression Analysis

Summary of Statistical Analysis

Number of observations: 21

Observations with Missing values: 0

Response Variable: dancing

Coefficient Standard Error Wald Test Chi Square > p

intercept 9.41772 3.94614 5.6957 0.01701

educ -1.12584 0.4906 5.26619 0.02174

These are exactly the same as from R.
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Confidence interval for β1 and eβ1

The main thing we are interested in are the estimated coefficients.

b1 = −1.13 is the estimated slope and seb1
= 0.49.

We can get a 95% CI for β1 as b1 ± 1.96seb1
, here

−1.13 ± 1.96(0.49) = (−2.1,−0.2).

We exponentiate everything to get odds:

e−1.13 = 0.32,

is the estimate of how the odds of dancing changes with education.

(e−2.1, e−0.2) = (0.12, 0.84),

is a 95% CI for how the odds change.
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The fitted or predicted probability functions are:

log

(

p̂

1 − p̂

)

= 9.42 − 1.13 edu

or

p̂(edu) =
exp(9.42 − 1.13 edu)

1 + exp(9.42 − 1.13 edu)
.

or

Ô(edu) = exp(9.42 − 1.13 edu).
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As mentioned, the p-value for testing H0 : β1 = 0 is 0.022; we reject

H0 : β1 = 0 at the 5% test level. The proportion of those that have

gone dancing in the last year is not constant across education level.

The probability of dancing is not independent of the amount of

education one has had.

The odds of dancing are one third, exp(−1.13) = 0.32, less for every

additional year of education.

Restated, the odds of dancing increases by a factor of

exp(1.13) = 3.1 for every decrease in the number of years of post high

school education.

On average, the older you get the less fun you have! Or maybe

what’s fun changes?
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Example: From 80 students polled in Stat 205 Spring 2011, whether
the student lived on campus or off, and their age in years was
recorded. A logistic regression model was fit to the data in Minitab
yielding the following output:
Variable Value Count

residence on 36 (Event)

off 44

Total 80

Logistic Regression Table

Predictor Coef SE Coef Z P

Constant 18.7198 5.24220 3.57 0.000

age -0.961319 0.269191 -3.57 0.000

For every year increase in age, we estimate that the odds of living on
campus changes by e−0.961 ≈ 0.38. For every year increase in age,
the odds of living on campus decreases by more than half. We can
compute a 95% confidence interval as

exp(−0.961 − 1.96(0.269)) ≈ 0.38 and exp(−0.961 + 1.96(0.269)) ≈ 0.65.

With 95% confidence, the odds of living on campus change by a

factor ranging from 0.38 to 0.65 for every year increase in age.
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The probability of living off campus as a function of age is given by

p̂(x) =
exp(18.72 − 0.96 x)

1 + exp(18.72 − 0.96 x)
.

This function and the raw proportions at ages 18, 19, 20, 21, 22, 23,

24, 25, 33, 37, 43 are plotted below:
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Homework:
A study was performed to determine the effect of a carcinogen on the
survival of rats. Thirty rats were injected with varying levels of a
carcinogen x (mg). For rats who survived one week, Yi = 1 was
recorded; for rats who died within one week, Yi = 0 was recorded. A
logistic regression was fit, and SAS computer output is shown below:

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Intercept 1 6.6656 2.3119 8.3129 0.0039

x 1 -0.2506 0.0826 9.2070 0.0024

1. Does the carcinogen increase or decrease the odds of survival?

Explain.

2. Is the carcinogen effect significant? That is, do we accept or

reject H0 : β1 = 0 at the 5% level? Explain.

3. Find, and interpret a 95% confidence interval for how the odds of

survival changes when the amount of carcinogen is increased by

one milligram.
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Answers:

1. The regression coefficient is negative, so increasing the

carcinogen decreases the odds of survival. This makes intuitive

sense. The odds of surviving are decreased by a factor of

e−0.2506 = 0.78 for every mg increase in carcinogen.

2. The effect is significant, we reject H0 : β1 = 0 at the 5% level

because 0.0024 < 0.05.

3. A 95% confidence interval for the log odds ratio is

b1 ± 1.96 × SEb1
= −0.2506 ± 1.96 × 0.0826 = (−0.412,−0.089).

Exponentiating gives the 95% confidence interval for how the

odds change when increasing the carcinogen by 1 mg:

(e−0.412, e−0.089) = (0.66, 0.91).
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