

Elementary Statistics for the Biological and Life Sciences

STAT 205

University of South Carolina Columbia, SC

STAT205 – Elementary Statistics for the Biological and Life Sciences

Chapter 11: An Introduction to Analysis of Variance (ANOVA)

STAT205 – Elementary Statistics for the Biological and Life Sciences

Example 11.2.1

Return to the (indep.) 2-sample model from Sec. 7.2 (t-test). What if there are more than 2 groups?

Ex. 11.2.1: Lamb response to diff't diets.
Y₁ = weight gain of lambs after diet type 1
Y₂ = weight gain of lambs after diet type 2
Y₃ = weight gain of lambs after diet type 3
So now we're interested in μ₁ vs. μ₂ vs. μ₃!

Multiple Group Model

<u>Observatio</u>	ns from:	<u># obsv'ns</u>	sample <u>mean</u>	sample <u>variance</u>	
Υ ₁ ~ Ν(μ	Ι ₁ ,σ²)	n ₁	$\overline{\mathbf{Y}}_{1}$.	S ² ₁	
Y₂ ~ N(µ	l ₂ ,σ²)	n ₂	$\overline{\mathbf{Y}}_{2}$.	S ² ₂	
Υ ₃ ~ Ν(μ	l ₃ ,σ²)	n ₃	$\overline{\mathbf{Y}}_{3}$.	S ₃ ²	
	0	6 6 6	:	:	
Υ _I ~ Ν(μ	l _I ,σ²)	n _I	Y _I .	$\mathbf{S}_{\mathbf{I}}^2$	
Notice: "dot" notation $\overline{Y}_{i} = \frac{1}{n_i} \sum_{j=1}^{n_i} Y_{ij}$					
		S _i ² =	$\frac{1}{n_i-1} \sum_{j=1}^{n_i}$	$(\mathbf{Y}_{ij} - \mathbf{\overline{Y}}_{i})^2$	

STAT205 – Elementary Statistics for the Biological and Life Sciences

Multiple Comparisons

- It's natural to ask: why not now just compare all possible pairs μ₁ – μ₂, μ₁ – μ₃, μ₂ – μ₃, etc., each with a t-test (or conf. interval)?
- DEF'N: The PROBLEM of MULTIPLE COMPARISONS occurs when the same data set is used to make multiple inferences on I > 1 associated parameters.

Error Inflation

- Suppose I = 3.
- Perform a t-test of H_o:μ₁ = μ₂ with falsepositive error rate set to α = .05.
- Then, perform another test, now on H_o:μ₁ = μ₃. *Jointly*, the probability of making a false positive error is now *larger* than 5%!!
- In fact, it gets worse as I increases. Table 11.1.2 gives an illustration \rightarrow

Table 11.1.2					
Table 11.1.2	Overall risk of Type I error in using repeated t tests at $\alpha = 0.05$				
Ι	Overall risk				
2	0.05				
3	0.12				
4	0.20				
6	0.37				
8	0.51				
10	0.63				

STAT205 – Elementary Statistics for the Biological and Life Sciences

Combined Analysis

Error considerations make it more efficient to study an overall null hypothesis:

 $\mathbf{H}_{\mathbf{o}}:\boldsymbol{\mu}_{1}=\boldsymbol{\mu}_{2}=\cdots=\boldsymbol{\mu}_{\mathbf{I}}$

(vs. a non-directional alternative

 H_A : some difference among μ_i 's).

Indeed, a more complete analysis seeks to incorporate information among <u>all</u> groups:

• e.g., we can estimate the common σ^2 using variation from all I groups.

ANOVA

DEF'N: The ANALYSIS OF VARIANCE (ANOVA) among I > 1 populations is used to make inferences about the I population means.

The various components for an ANOVA are assembled from the data. We start with:

$$n^* = \sum_{i=1}^{I} n_i$$
 = total sample size

$$\cdot = \frac{1}{n^*} \sum_{i=1}^{-1} \sum_{j=1}^{i} y_{ij} = \text{grand mean}$$

Sums of Squares

<u>DEF'N</u>: SUMS OF SQUARES are sums of squared deviations from a central value.

(a) the WITHIN GROUPS S.S. is

$$SS(Within) = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{i.})^{2}$$

- (b) the **BETWEEN GROUPS S.S.** is
 - $SS(Between) = \sum_{i} \sum_{j} (\overline{y}_{i} \overline{y}_{i})^{2} = \sum_{i} n_{i} (\overline{y}_{i} \overline{y}_{i})^{2}$

(c) the TOTAL S.S. is SS(Total) = $\sum_{i} \sum_{j} (y_{ij} - \overline{y}_{..})^2$

STAT205 – Elementary Statistics for the Biological and Life Sciences

SS(Resid.)

Notice that in

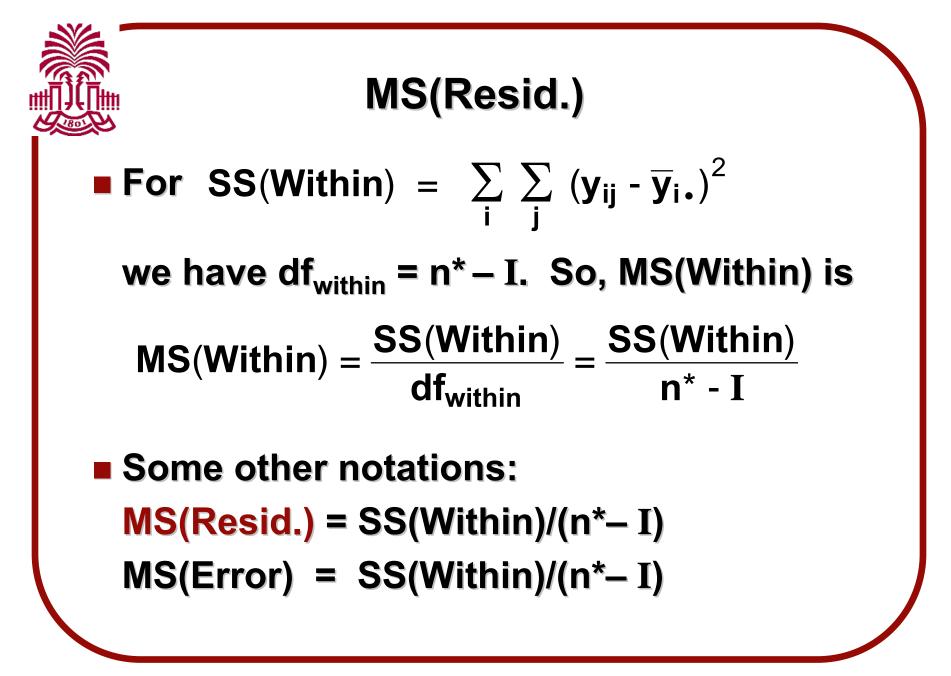
$$SS(Within) = \sum_{i} \sum_{j} (y_{ij} - \overline{y}_{i.})^{2}$$

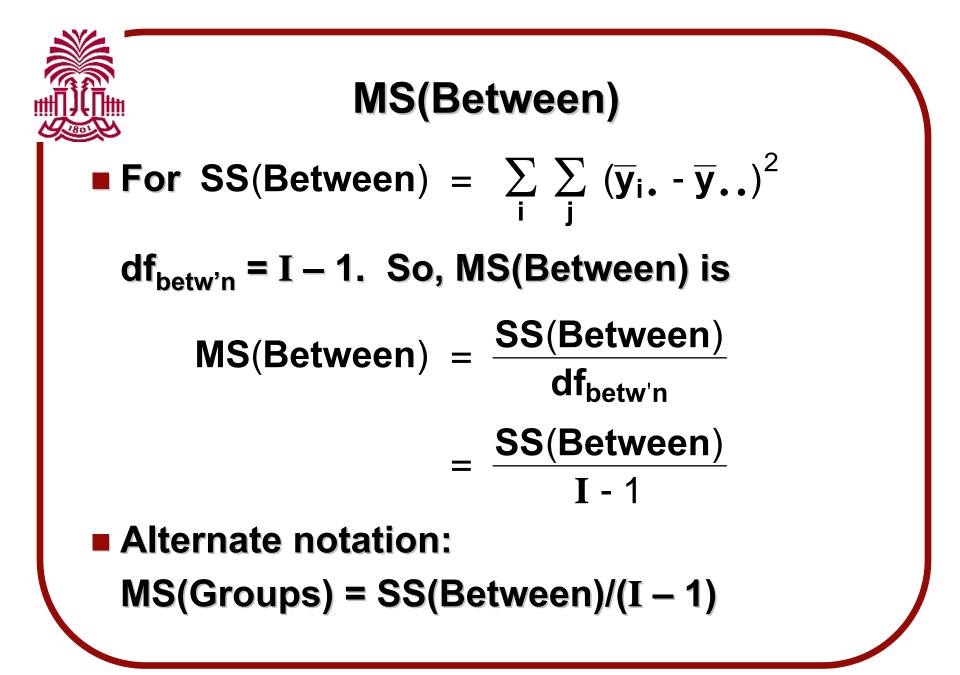
the per- group means \overline{y}_i . can be viewed as "predictors" of each y_{ij} under our multigroup model, so these deviations are a form of "residual" or "error" from y_{ii}

So, we often write SS(Within) = SS(Resid.) or sometimes SS(Within) = SS(Error).

Mean Squares

DEF'N: A MEAN SQUARE (MS) is the avg. of the squared deviations from a central value. It is a Sum of Squares (SS) divided by the number of informative values in the SS. called "degrees of freedom", or df





Computing Formulae

For computing purposes, we use:

$$SS(Total) = \sum_{i} \sum_{j} y_{ij}^{2} - \frac{1}{n^{*}} \left(\sum_{i} \sum_{j} y_{ij}\right)^{2}$$

and SS(Resid.) = $\sum_{i} (n_i - 1)S_i^2$ (= SS{Within}) And it turns out (11.2.1) that

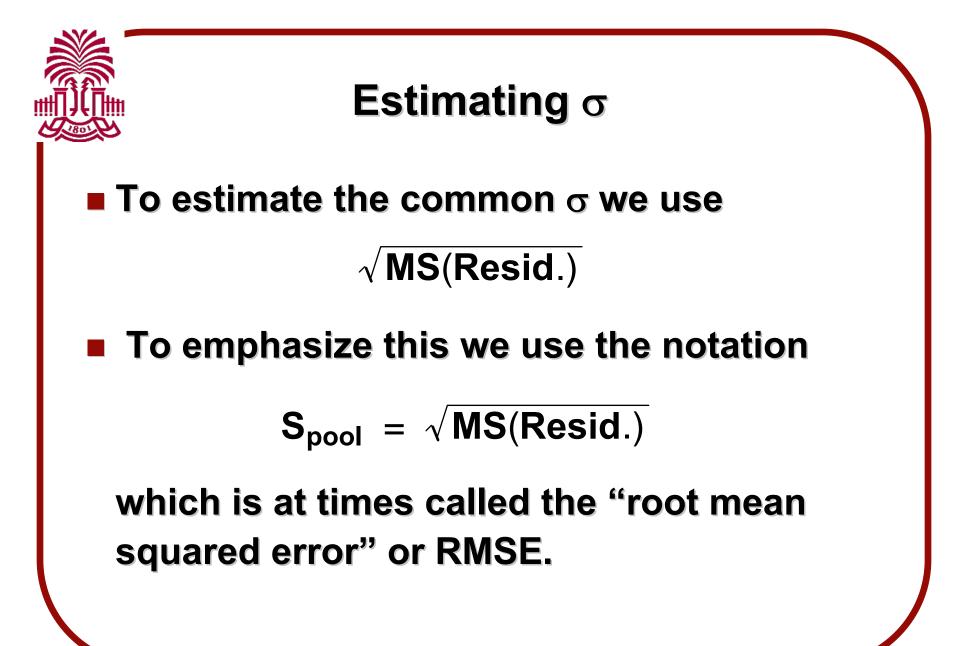
SS(Tot.) = SS(Between) + SS(Resid.)

Pooled Average Also, since $df_{resid} = n^* - I = \sum_{i=1}^{I} (n_i - 1)$

we can write

$$MS(Resid.) = \frac{\sum (n_i - 1)S_i^2}{\sum (n_i - 1)}$$

as a df-weighted ("pooled") avg. of the pergroup variances. If all the popl'n variances are equal to σ^2 , then MS(Resid.) is an unbiased estimator of this common σ^2 .



ANOVA

- We collect all the
 - Sums of Squares,
 - Mean Squares,
 - df, etc.,

together into a simple table of values, called an ANOVA Table.

Think of it simply as an accounting device, or perhaps as a "spreadsheet" for arranging all the various terms.

ANOVA Table					
Source of Variation	df	SS	MS		
Between Groups	I - 1	$\sum_{\mathbf{i}} \sum_{\mathbf{j}} (\overline{\mathbf{y}}_{\mathbf{i}} - \overline{\mathbf{y}}_{\mathbf{i}})^2$	<u>SS(Between)</u> I - 1		
Residual	n* - I	$\sum_{\mathbf{i}} \sum_{\mathbf{j}} (\mathbf{y}_{\mathbf{ij}} - \overline{\mathbf{y}}_{\mathbf{i}})^2$	<u>SS(Resid.)</u> n* - I		
Total	n * - 1	$\sum_{\mathbf{i}} \sum_{\mathbf{j}} (\mathbf{y}_{\mathbf{ij}} - \overline{\mathbf{y}}_{})^2$			
NOTE: Recal	I that SS(Re	esid.) is also called SS(Wit	hin)		

Example 11.2.1

Ex. 11.2.1: For the Lamb Weight example, we have the following data:

Table 11.2.1 Weight gains of lambs (lb)*				
	Diet 1	Diet 2	Diet 3	
	8	9	15	
	16	16	10	
	9	21	17	
		11	6	
		18		
n _i	3	5	4	
$Sum = \sum_{j=1}^{n_i} y_{ij}$	33	75	48	
Mean = \overline{y}_i	11.000	15.000	12.000	
$SD = s_i$	4.359	4.950	4.967	
*Extra digits are reported for accuracy of subsequent calculations.				

Example 11.2.6 – ANOVA table

The ANOVA calculations for the Lamb Weight data done in R give (coming up...) Table 11.2.3:

Table 11.2.3 ANOVA table for lamb weight gains				
Source	df	SS	MS	
Between diets	2	36	18.00	
Within diets	9	210	23.33	
Total	11	246		

So, e.g.,
$$S_{pool} = \sqrt{23.333} = 4.83$$
 lbs.

F-testing

- We use the ANOVA calculations to assess H_o: μ₁ = ··· = μ_I. To do so, we need the following:
- <u>DEF'N</u>: The F-DISTRIBUTION with v_1 and v_2 degrees of freedom is the dist'n of the ratio of two (indep.) mean squares. NOTATION: F ~ F(v_1 , v_2)

In F(v₁,v₂), v₁ = df from the numerator MS, and v₂ = df from the denominator MS.

F-ratio

We use F for testing H_o : $\mu_1 = \cdots = \mu_I$ as follows:

- calculate F_s = MS(Between)/MS(Resid.)
- under H_o, F_s ~ F(df_{betw'n}, df_{resid})
- Obtain P-value from R.
- If P-value < α then reject!

Review

- We now have I groups to compare, each with their own mean μ₁, μ₂,..., μ_I.
- We assume the variance σ² is the same across the groups.
- The ANOVA table places all the SS, MS, F_s, and the P-value into a convenient table, called the ANOVA table.
- The P-value tests H_o:µ₁ = µ₂ = ··· = µ_I vs. a nondirectional alternative. If we reject, then we know there's a group effect!

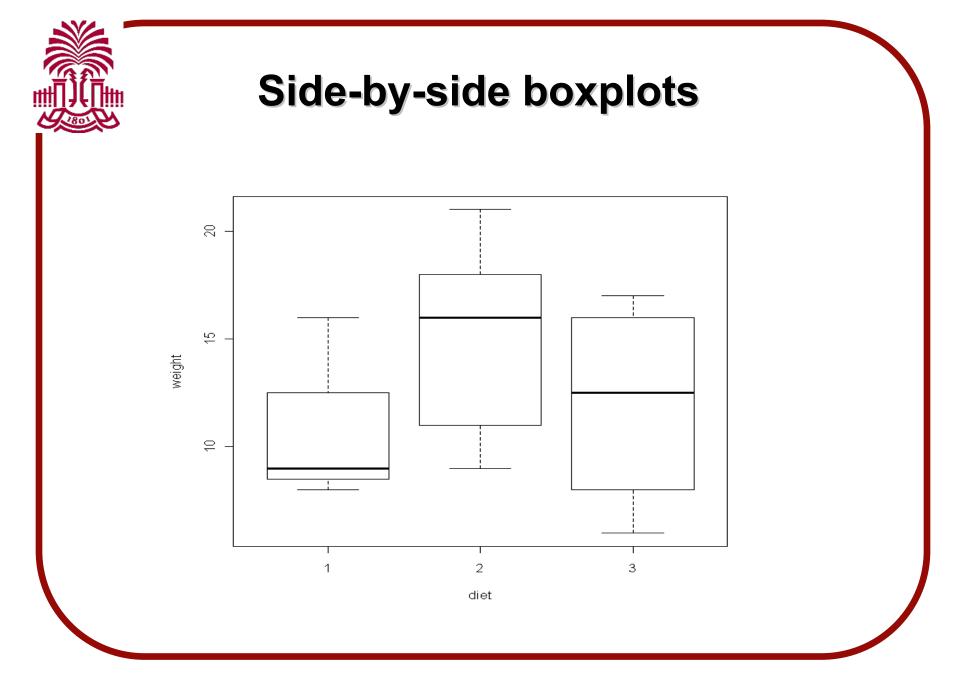
ANOVA in R

- We need to define two lists, a list of the response variable, and list indicating which group the response came from.
- The group list needs to be a "factor" in R.
- Fitting the ANOVA model is carried out through fit=aov(response~group) then typing summary(fit) to get the ANOVA table and P-value.
- Let's look at the lamb diet data...

R code

- > weight=c(8,16,9,9,16,21,11,18,15,10,17,6)
- > diet =c(1,1,1,2,2,2,2,2,3,3,3,3)
- > diet=factor(diet)
- > plot(weight~diet)
- > fit=aov(weight~diet)
- > summary(fit)

	Df	Sum	Sq	Mean	Sq	F	value	Pr(>F)	
diet	2		36	18.0	000	C	.7714	0.4907	,
Residuals	9	2	10	23.3	333				



STAT205 – Elementary Statistics for the Biological and Life Sciences

Interpretation

- P-value = 0.49 > 0.05, we accept that there is no difference in weight gain due to diet at the 5% level.
- An estimate of σ^2 23.33.
- We will now analyze the "MOA & schizophrenia" data from Chapter 1.
- You will analyze the "radish growth" data from Chapter 2 in your homework.