Stat 205 Quiz 3

Let D+ denote that an individual is infected with Hepatitis C and D- denotes an individual is disease-free. González et al. (2008) discuss a test for Hepatitis C that has sensitivity $Pr{T + |D+} = 0.867$ and perfect specificity $Pr{T - |D-} = 1.000$. The prevalence of Hepatitis C is $Pr{D+} = 0.0074$ in the general population. Here are some general rules for *any* events A and B:

- $\Pr{A} = \Pr{A|B}\Pr{B} + \Pr{A|B^C}\Pr{B^C}$ (law of total probability).
- $\Pr{B|A} = \frac{\Pr{A|B}\Pr{B}}{\Pr{A}}$ (Bayes' rule).
- $\Pr{A^C|B} = 1 \Pr{A|B}$ (compliment rule for conditional probability).
- 1. Find the probability that a test comes up positive $Pr{T+}$. Answer: Use the law of total probability and the complement rules

$$Pr{T+} = Pr{T + |D+}Pr{D+} + Pr{T + |D-}Pr{D-}$$

= Pr{T + |D+}Pr{D+} + (1 - Pr{T - |D-})(1 - Pr{D+})
= 0.867 \times 0.0074 + (1 - 1) \times (1 - 0.0074)
= 0.00642.

2. Find the probability of having the disease given the test comes up positive $Pr\{D + |T+\}$. Answer: Use Bayes' rule

$$Pr\{D + |T+\} = \frac{Pr\{T + |D+\}Pr\{D+\}}{Pr\{T+\}}$$
$$= \frac{0.867 \times 0.0074}{0.00642}$$
$$= 1.$$

3. Is D+ independent of T+? Why or why not? Answer: No, they are dependent because $Pr\{D + |T+\} = 1$ which is different from $Pr\{D+\} = 0.0074$. Knowing that the test came back positive T+ changes the probability of having Hepatitis C from 0.0074 to 1.