Review for Exam I

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 704: Data Analysis I

Preliminaries: Appendix A

- (A.3) Random variable: discrete \& continuous.
- Mean and variance.
- Covariance.
- Independent random variables; formulae for mean and variance.
- Sums of independent normal random variables. Why important?
- Central limit theorem.
- (A.4) $N(\mu, \sigma), t_{\nu}, F_{\nu_{1}, \nu_{2}}, \chi_{\nu}^{2}$ distributions. Why important?

One \& two sample inference: normal data

- (A.6) $Y_{1}, \ldots, Y_{n} \stackrel{i i d}{\sim} N\left(\mu, \sigma^{2}\right)$. Cls and $H_{0}: \mu=\mu_{0}$. Extension to paired data.
- (A.7) Two-sample problem with normal data; equal and unequal variances.
- Checking normality: Q-Q plots, formal tests, histograms, boxplots. Outliers.

One \& two sample inference: nonparametric

- Sign test for population median. Assumptions?
- Wilcoxin signed rank test for population median. Assumptions?
- Mann-Whitney-Wilcoxin test for two samples. Assumptions?

Simple linear regression: minimal assumptions

- (1.3) $Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}$. Assumptions?
- Interpretation of β_{0}, β_{1}, and σ.
- Matrix form of the model.
- (1.6) Least squares. Normal equations. Lots of algebra to get b_{0} and b_{1}.
- Introduction to $\hat{Y}_{i}=b_{0}+x_{i} b_{1}$ and $e_{i}=Y_{i}-\hat{Y}_{i}$.
- Estimation: OLS leads to BLUEs $\left(b_{0}, b_{1}\right)$.
- (1.7) $\mathrm{MSE}=\frac{1}{n-p} \sum_{i=1}^{n}\left(Y_{i}-\mathbf{x}_{i}^{\prime} \mathbf{b}\right)^{2}$ estimates σ^{2}.

Simple linear regression: normal errors

- $\epsilon_{i} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)$. Why?
- (1.8) OLS esimators $\left(b_{0}, b_{1}\right)$ also MLE under normality.
- (2.1) Both b_{0} and b_{1} are linear combination of independent normals...
- Inference about b_{1} : Cl \& testing.
- (2.3) $\mathbf{b}=\left(b_{0}, b_{1}\right)$ bivariate normal. Leads to inference about 1 (2.4) $E\left(Y_{h}\right)=\beta_{0}+\beta_{1} x_{h}$. Mean of everyone w / x_{h}.
2 (2.5) $Y_{h}=\beta_{0}+\beta_{1} x_{h}+\epsilon_{h}$. New obs. at x_{h}.
- Table of regression effects. Toluca data.

Simple linear regression: ANOVA, SS, tests, \& correlation

- (2.7) $\operatorname{SSTO}=$ SSR + SSE, ANOVA table, F-test for $H_{0}: \beta_{1}=0$.
- (2.8) General linear test - "big model / little model".
- (2.9) R^{2} and $r=\operatorname{corr}(x, Y)$.
- (2.11) Bivariate normal distribution, Pearson correlation between x and Y, Spearman correlation.

Matrices and vectors

- (5.2) Matrix addition, (5.3) matrix multiplication, (5.4) symmetric matrix, transpose, (5.6) inverse of a matrix.
- (5.8) Random vectors.
- (5.9) simple linear regression and two-sample problem using matrices.
- (5.10) $\mathbf{b}=\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \mathbf{X}^{\prime} \mathbf{Y}$ are least-squares estimators.

Random vectors (5.8)

Let $\mathbf{Y} \in \mathbb{R}^{p}$ be random with $E\{\mathbf{Y}\}=\boldsymbol{\mu}$ and $\operatorname{cov}\{\mathbf{Y}\}=\boldsymbol{\Sigma}$. Let $\mathbf{a} \in \mathbb{R}^{p}$ and $\mathbf{A} \in \mathbb{R}^{q \times p}$. Then

$$
E\{\mathbf{A} \mathbf{Y}+\mathbf{a}\}=\mathbf{A} \boldsymbol{\mu}+\mathbf{a},
$$

and

$$
\operatorname{cov}\{\mathbf{A} \mathbf{Y}+\mathbf{a}\}=\mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}
$$

If $\mathbf{Y} \sim N_{p}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ then

$$
\mathbf{A} \mathbf{Y}+\mathbf{a} \sim N_{q}\left(\mathbf{A} \boldsymbol{\mu}+\mathbf{a}, \mathbf{A} \boldsymbol{\Sigma} \mathbf{A}^{\prime}\right)
$$

Recall $\hat{\mathbf{Y}}$ and \mathbf{e} from multiple regression, the fitted values and residuals. For what \mathbf{A} can we write $\hat{\mathbf{Y}}=\mathbf{A Y}$? For what \mathbf{A} can we write $\mathbf{e}=\mathbf{A Y}$?

Write SSTO $=S S R+$ SSE in terms of matrices.

Multiple regression

- (6.1) $Y_{i}=\beta_{0}+\beta_{1} x_{i 1}+\cdots+x_{i k} \beta_{i k}+\epsilon_{i}$. Binary predictors.
- Types of models that fit into this framework. Interpretation of individual regression effects.
- Dwayne Portrait Studios, Inc.
- (6.2) Matrix approach $\mathbf{Y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}$.
- (6.3) Estimation: OLS \& MLE.
- (6.4) Fitted values $\hat{\mathbf{Y}}=\mathbf{X b}$ and residuals $\mathbf{e}=\mathbf{Y}-\hat{\mathbf{Y}}$.
- (6.5) ANOVA table, F-test for $H_{0}: \beta_{1}=\cdots=\beta_{k}=0, R^{2}$.
- (6.6) Inference about \mathbf{b} and each b_{j}. Note $\hat{\boldsymbol{\beta}} \sim N_{p}\left(\boldsymbol{\beta},\left(\mathbf{X}^{\prime} \mathbf{X}\right)^{-1} \sigma^{2}\right)$. Replace σ^{2} by MSE to get se $\left(b_{j}\right)^{2}$.
- (6.7) Estimating $\mathbf{x}_{h}^{\prime} \boldsymbol{\beta}$ and $\mathbf{x}_{h}^{\prime} \boldsymbol{\beta}+\epsilon_{h}$.
- Table of regression effects.

Multiple regression: model checking \& transformations

- Assumptions to check: (a) linear mean, (b) constant variance, (c) normal errors. Independence discussed in Chapter 12.
- (3.2-3.3) Residual plots: (a) e_{i} vs. x_{j} for $j=1, \ldots, k$, (b) e_{i} vs. $\hat{Y}_{i},(c)$ normal probability plot of e_{1}, \ldots, e_{n}.
- (6.8) Scatterplot matrix (marginal relationships only).
- (3.9 \& 6.8) Transformations in x_{1}, \ldots, x_{k} and in Y. Box-Cox family for Y.
- (3.6 \& 6.8) Breusch-Pagan test for constant variance.

Extra SS, multicollinearity, coef. partial det., VIFs

- (7.1) Extra sums of squares, how much of SSTO gets eaten up by adding x_{3}, x_{4} to a model with x_{1}, x_{2} ? Answer: $\operatorname{SSR}\left(x_{3}, x_{4} \mid x_{1}, x_{2}\right)$. Definition. Sequential $\operatorname{SS}: \operatorname{SSR}\left(x_{1}\right)$, $\operatorname{SSR}\left(x_{2} \mid x_{1}\right), \operatorname{SSR}\left(x_{3} \mid x_{1}, x_{2}\right)$, etc.
- (7.3) General linear test of $H_{0}: \mathbf{M} \boldsymbol{\beta}=\mathbf{m}$, SAS test statement. Dropping several predictors at once.
- (7.4) $R_{Y 23 \mid 14}^{2}=\operatorname{SSR}\left(x_{2}, x_{3} \mid x_{1}, x_{4}\right) / \operatorname{SSE}\left(x_{1}, x_{4}\right)$, etc.
- (7.6) Multicollinearity: VIF ${ }_{i}$'s, correlation matrix of predictors. Does multicollinearity necessarily indicate a poor model? How does severe multicollinearity $\left(\right.$ VIF $\left._{j}>10\right)$ affect interpretation of β_{j} ?

Exam I

- Closed book, closed notes.
- Covers Chapters 1 through 7 plus one and two sample methods from first three lectures.
- Anything in the notes is fair game, but I will not ask you to reproduce long formulas, e.g. the formula for a prediction interval.
- Go over homeworks 1-4.
- Need to know what SAS procs do, e.g. test command in proc reg. Also npar1way, ttest, gplot, etc.
- Mostly short answer.

