b_{0} and b_{1} are unbiased (p. 42)
Recall that least-squares estimators $\left(b_{0}, b_{1}\right)$ are given by:

$$
b_{1}=\frac{n \sum x_{i} Y_{i}-\sum x_{i} \sum Y_{i}}{n \sum x_{i}^{2}-\left(\sum x_{i}\right)^{2}}=\frac{\sum x_{i} Y_{i}-n \bar{Y} \bar{x}}{\sum x_{i}^{2}-n \bar{x}^{2}}
$$

and

$$
b_{0}=\bar{Y}-b_{1} \bar{x}
$$

Note that the numerator of b_{1} can be written

$$
\sum x_{i} Y_{i}-n \bar{Y} \bar{x}=\sum x_{i} Y_{i}-\bar{x} \sum Y_{i}=\sum\left(x_{i}-\bar{x}\right) Y_{i}
$$

Then the expectation of b_{1} 's numerator is

$$
\begin{aligned}
E\left\{\sum\left(x_{i}-\bar{x}\right) Y_{i}\right\} & =\sum\left(x_{i}-\bar{x}\right) E\left(Y_{i}\right) \\
& =\sum\left(x_{i}-\bar{x}\right)\left(\beta_{0}+\beta_{1} x_{i}\right) \\
& =\beta_{0} \sum x_{i}-n \bar{x} \beta_{0}+\beta_{1} \sum x_{i}^{2}-n \bar{x}^{2} \beta_{1} \\
& =\beta_{1}\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)
\end{aligned}
$$

Finally,

$$
\begin{aligned}
E\left(b_{1}\right) & =\frac{E\left\{\sum\left(x_{i}-\bar{x}\right) Y_{i}\right\}}{\sum x_{i}^{2}-n \bar{x}^{2}} \\
& =\frac{\beta_{1}\left(\sum x_{i}^{2}-n \bar{x}^{2}\right)}{\sum x_{i}^{2}-n \bar{x}^{2}} \\
& =\beta_{1}
\end{aligned}
$$

Also,

$$
\begin{aligned}
E\left(b_{0}\right) & =E\left(\bar{Y}-b_{1} \bar{x}\right) \\
& =\frac{1}{n} \sum E\left(Y_{i}\right)-E\left(b_{1}\right) \bar{x} \\
& =\frac{1}{n} \sum\left[\beta_{0}+\beta_{1} x_{i}\right]-\beta_{1} \bar{x} \\
& =\frac{1}{n}\left[n \beta_{0}+n \beta_{1} \bar{x}\right]-\beta_{1} \bar{x} \\
& =\beta_{0} .
\end{aligned}
$$

As promised, b_{1} is unbiased for β_{1} and b_{0} is unbiased for β_{0}.

Example in book (p. 15): $x=$ is age of subject, Y is number attempts to accomplish task.

x	20	55	30
y	5	12	10

For these data, the least squares line is

$$
\hat{Y}=2.81+0.177 x
$$

- A $x=20$ year old is estimated to need $\hat{Y}=2.81+0.177(20)=6.35$ times to accomplish the task on average.
- For each year increase in age, the mean number of attempts increases by 0.177 attempts.
- For every $1 / 0.177=5.65$ years increase in age on average one more attempt is needed.
- $b_{0}=2.81$ is only interpretable for those who are zero years old.

Residuals \& fitted values, Section 1.6

- The i th fitted value is $\hat{Y}_{i}=b_{0}+b_{1} x_{i}$.
- The points $\left(x_{1}, \hat{Y}_{1}\right), \ldots,\left(x_{n}, \hat{Y}_{n}\right)$ fall on the line $y=b_{0}+b_{1} x$, the points $\left(x_{1}, Y_{1}\right), \ldots,\left(x_{n}, Y_{n}\right)$ do not.
- The i th residual is

$$
e_{i}=Y_{i}-\hat{Y}_{i}=Y_{i}-\left(b_{0}+b_{1} x_{i}\right), \quad i=1, \ldots, n,
$$

the difference between observed and fitted values.

- e_{i} estimates ϵ_{i}.

Properties of the residuals (pp. 23-24):

1. $\sum_{i=1}^{n} e_{i}=0$ (from normal equations)
2. $\sum_{i=1}^{n} x_{i} e_{i}=0$ (from normal equations)
3. $\sum_{i=1}^{n} \hat{Y}_{i} e_{i}=0$ (?)
4. Least squares line always goes through (\bar{x}, \bar{Y}) (easy to show).

Estimating σ^{2}, Section 1.7

σ^{2} is the error variance. If we observed the $\epsilon_{1}, \ldots, \epsilon_{n}$, a natural estimator is $S^{2}=\frac{1}{n} \sum_{i=1}^{n}\left(\epsilon_{i}-0\right)^{2}$. If we replace each ϵ_{i} by e_{i} we have $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} e_{i}^{2}$. However,

$$
\begin{aligned}
E\left(\hat{\sigma}^{2}\right) & =\frac{1}{n} \sum_{i=1}^{n} E\left(Y_{i}-b_{0}-b_{1} x_{i}\right)^{2} \\
& =\ldots \text { lot of hideous algebra later... } \\
& =\frac{n-2}{n} \sigma^{2} .
\end{aligned}
$$

So in the end we use the unbiased mean squared error

$$
M S E=\frac{1}{n-2} \sum_{i=1}^{n} e_{i}^{2}=\frac{1}{n-2} \sum_{i=1}^{n}\left(Y_{i}-b_{0}-b_{1} x_{i}\right)^{2} .
$$

So an estimate of $\operatorname{var}\left(Y_{i}\right)=\sigma^{2}$ is

$$
s^{2}=M S E=\frac{S S E}{n-2}=\frac{\sum_{i=1}^{n}\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-2}\left(=\frac{\sum_{i=1}^{n} e_{i}^{2}}{n-2}\right)
$$

Then $E(M S E)=\sigma^{2} . M S E$ is automatically given in SAS and R . $s=\sqrt{M S E}$ is an estimator of σ, the standard deviation of Y_{i}. Example: page 15. $M S E=5.654$ and $\sqrt{M S E}=2.378$ attempts. (Verify this for practice.)

Chapter 2

So far we have only assumed $E\left(\epsilon_{i}\right)=0$ and $\operatorname{var}\left(\epsilon_{i}\right)=\sigma^{2}$. We can additionally assume

$$
\epsilon_{1}, \ldots, \epsilon_{n} \stackrel{i i d}{\sim} N\left(0, \sigma^{2}\right)
$$

This allows us to make inference about β_{0}, β_{1}, and obtain prediction intervals for a new Y_{n+1} with covariate x_{n+1}. The model is, succinctly,

$$
Y_{i} \stackrel{i n d .}{\sim} N\left(\beta_{0}+\beta_{1} x_{i}, \sigma^{2}\right), \quad i=1, \ldots, n .
$$

Fact: Under the assumption of normality, the least squares estimators $\left(b_{0}, b_{1}\right)$ are also maximum likelihood estimators (pp. $27-30)$ for $\left(\beta_{0}, \beta_{1}\right)$.
The likelihood of $\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$ is the density of the data given these parameters:

$$
\begin{aligned}
\mathcal{L}\left(\beta_{0}, \beta_{1}, \sigma^{2}\right) & =f\left(y_{1}, \ldots, y_{n} \mid \beta_{0}, \beta_{1}, \sigma^{2}\right) \\
& \stackrel{i n d .}{=} \prod_{i=1}^{n} f\left(y_{i} \mid \beta_{0}, \beta_{1}, \sigma^{2}\right) \\
& =\prod_{i=1}^{n} \frac{1}{2 \pi \sigma^{2}} \exp \left(-0.5 \frac{\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}}{\sigma^{2}}\right) \\
& =\left(2 \pi \sigma^{2}\right)^{-n / 2} \exp \left(-\frac{1}{2 \sigma^{2}} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}\right)
\end{aligned}
$$

$\left(\beta_{0}, \beta_{1}, \sigma^{2}\right)$ is maximized when $\sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\beta_{1} x_{i}\right)^{2}$ is as small as possible \Rightarrow least-squares estimators are MLEs too!
Note that the MLE of σ^{2} is, instead, $\hat{\sigma}^{2}=\frac{1}{n} \sum_{i=1}^{n} e_{i}^{2}$; the denominator changes.

Section 2.1: Inferences on β_{1}
From slide $1, b_{1}$ is

$$
b_{1}=\frac{\sum\left(x_{i}-\bar{x}\right) Y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\sum_{i=1}^{n}\left[\frac{\left(x_{i}-\bar{x}\right)}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}\right] Y_{i} .
$$

Thus, b_{1} is a weighted sum of n independent normal random variables Y_{1}, \ldots, Y_{n}. Therefore

$$
b_{1} \sim N\left(\beta_{1}, \frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right) .
$$

We computed $E\left(b_{1}\right)$ before and can use standard result for the variance of the weighted sum of independent random variables.

So,

$$
s d\left(b_{1}\right)=\sqrt{\frac{\sigma^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

Take b_{1}, subtract off its mean, and divide by its standard deviation and you've got...

$$
\frac{b_{1}-\beta_{1}}{s d\left(b_{1}\right)} \sim N(0,1)
$$

We will never know $s d\left(b_{1}\right)$; we estimate it by

$$
s e\left(b_{1}\right)=\sqrt{\frac{M S E}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}} .
$$

Question: How do we make $\operatorname{var}\left(b_{1}\right)$ as small as possible?
(If we do this, we cannot actually check the assumption of linearity...)

$\mathbf{C I}$ and $H_{0}: \beta_{1}=\beta_{10}$

Fact:

$$
\frac{b_{1}-\beta_{1}}{s e\left(b_{1}\right)} \sim t_{n-2}
$$

A $(1-\alpha) 100 \%$ CI for β_{1} has endpoints

$$
b_{1} \pm t_{n-1}(1-\alpha / 2) \operatorname{se}\left(b_{1}\right) .
$$

Under $H_{0}: \beta_{1}=\beta_{10}$,

$$
t^{*}=\frac{b_{1}-\beta_{10}}{s e\left(b_{1}\right)} \sim t_{n-2}
$$

P-values are computed as usual.
Note: Of particular interest is $H_{0}: \beta_{1}=0$, that $E\left(Y_{i}\right)=\beta_{0}$ and does not depend on x_{i}. That is $H_{0}: x_{i}$ is useless in predicting Y_{i}.

Regression output typically produces a table like:

Parameter	Estimate	Standard error	t^{*}	p-value
Intercept β_{0}	b_{0}	$\operatorname{se}\left(b_{0}\right)$	$t_{0}^{*}=\frac{b_{0}}{\operatorname{se}\left(b_{0}\right)}$	$P\left(\|T\|>\left\|t_{0}^{*}\right\|\right)$
Slope β_{1}	b_{1}	$\operatorname{se}\left(b_{1}\right)$	$t_{1}^{*}=\frac{b_{1}}{\operatorname{se}\left(b_{1}\right)}$	$P\left(\|T\|>\left\|t_{1}^{*}\right\|\right)$

where $T \sim t_{n-p}$ and p is the number of parameters used to estimate the mean, here $p=2: \beta_{0}$ and β_{1}. Later p will be the number of predictors in the model plus one.

The two p-values in the table test $H_{0}: \beta_{0}=0$ and $H_{0}: \beta_{1}=0$ respectively. The test for zero slope is usually not of interest.
[Prof. Hitchcock's SAS and R examples]

Inference about the intercept β_{0}
The intercept usually is not very interesting, but just in case...
Write b_{0} as a linear combination of Y_{1}, \ldots, Y_{n} as we did with the slope:

$$
b_{0}=\bar{Y}-b_{1} \bar{x}=\sum_{i=1}^{n}\left[\frac{1}{n}-\frac{\bar{x}\left(x_{i}-\bar{x}\right)}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}\right] Y_{i} .
$$

After some slogging, this leads to

$$
b_{0} \sim N\left(\beta_{0}, \sigma^{2}\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]\right) .
$$

Define se $\left(b_{0}\right)=\sqrt{M S E\left[\frac{1}{n}+\frac{\bar{x}^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]}$ and you're in business:

$$
\frac{b_{0}-\beta_{0}}{s e\left(b_{0}\right)} \sim t_{n-2} .
$$

Obtain CIs and tests about β_{0} as usual...

Estimating $E\left(Y_{h}\right)=\beta_{0}+\beta_{1} x_{h}$
(e.g. inference about the regression line)

Let x_{h} be any predictor; say we want to estimate the mean of all outcomes in the population that have covariate x_{h}. This is given by

$$
E\left(Y_{h}\right)=\beta_{0}+\beta_{1} x_{h} .
$$

Our estimator of this is

$$
\begin{aligned}
\hat{Y}_{h} & =b_{0}+b_{1} x_{h} \\
& =\sum_{i=1}^{n}\left[\frac{1}{n}-\frac{\bar{x}\left(x_{i}-\bar{x}\right)}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}+\frac{\left(x_{i}-\bar{x}\right) x_{h}}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}\right] Y_{i} \\
& =\sum_{i=1}^{n}\left[\frac{1}{n}+\frac{\left(x_{h}-\bar{x}\right)\left(x_{i}-\bar{x}\right)}{\sum_{j=1}^{n}\left(x_{j}-\bar{x}\right)^{2}}\right] Y_{i}
\end{aligned}
$$

Again we have a linear combination of independent normals as out estimator. This leads, after slogging through some math (pp. 53-54), to

$$
b_{0}+b_{1} x_{h} \sim N\left(\beta_{0}+\beta_{1} x_{h}, \sigma^{2}\left[\frac{1}{n}+\frac{\left(x_{h}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]\right) .
$$

As before, this leads to a $(1-\alpha) 100 \%$ CI for $\beta_{0}+\beta_{1} x_{h}$

$$
b_{0}+b_{1} x_{h} \pm t_{n-2}(1-\alpha / 2) s e\left(b_{0}+b_{1} x_{h}\right)
$$

where $\operatorname{se}\left(b_{0}+b_{1} x_{h}\right)=\sqrt{M S E\left[\frac{1}{n}+\frac{\left(x_{h}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]}$.
Question: For what value of x_{h} is the CI narrowist? What happens when x_{h} moves away from \bar{x} ?

Prediction intervals

We discussed constructing a CI for the unknown mean at x_{h}, $\beta_{0}+\beta_{1} x_{h}$.

What if we want to find an interval that the actual value Y_{h} is in (versus only it's mean) with fixed probability?

If we knew β_{0}, β_{1}, and σ^{2} this is easy:

$$
Y_{h}=\beta_{0}+\beta_{1} x_{h}+\epsilon_{h},
$$

and so, for example,

$$
P\left(\beta_{0}+\beta_{1} x_{h}-1.96 \sigma \leq Y_{h} \leq \beta_{0}+\beta_{1} x_{h}+1.96 \sigma\right)=0.95 .
$$

Unfortunately, we don't know β_{0} and β_{1}. We don't even know σ, but we can estimate all three of these.

An interval that contains Y_{h} with $(1-\alpha)$ probability needs to account for

1. The variability of the estimators b_{0} and b_{1}; i.e. we don't know exactly where $\beta_{0}+\beta_{1} x_{h}$ is, and
2. The natural variability of each response built into the model;

$$
\epsilon_{h} \sim N\left(0, \sigma^{2}\right)
$$

We have

$$
\begin{aligned}
\operatorname{var}\left(b_{0}+b_{1} x_{h}+\epsilon_{h}\right) & =\operatorname{var}\left(b_{0}+b_{1} x_{h}\right)+\operatorname{var}\left(\epsilon_{h}\right) \\
& =\sigma^{2}\left[\frac{1}{n}+\frac{\left(x_{h}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}\right]+\sigma^{2} \\
& =\sigma^{2}\left[\frac{1}{n}+\frac{\left(x_{h}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}+1\right]
\end{aligned}
$$

Soooo.........
Estimating σ^{2} by MSE we obtain a $(1-\alpha / 2) 100 \%$ prediction interval (PI) for Y_{h} is

$$
b_{0}+b_{1} x_{h} \pm t_{n-2}(1-\alpha / 2) \sqrt{M S E\left[\frac{1}{n}+\frac{\left(x_{h}-\bar{x}\right)^{2}}{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2}}+1\right]} .
$$

Note: As $n \rightarrow \infty, b_{0} \xrightarrow{P} \beta_{0}, b_{1} \xrightarrow{P} \beta_{1}, t_{n-2}(1-\alpha / 2) \rightarrow \Phi^{-1}(1-\alpha / 2)$, and $M S E \xrightarrow{P} \sigma^{2}$. That is, as the sample size grows, the prediction interval converges to

$$
\beta_{0}+\beta_{1} x_{h} \pm \Phi^{-1}(1-\alpha / 2) \sigma
$$

Example: Toluca data.

- Find a 90% CI for the mean number of work hours for lots of size $x_{h}=65$ units.
- Find a 90% PI for the number of work hours for a lot of size $x_{h}=65$ units.
- Repeat both for $x_{h}=100$ units.
- See SAS/R examples.

An aside: Working \& Hotelling developed $100(1-\alpha) \%$ confidence bands for the entire regression line; see Section 2.6 for details. Scheffe's method can also be used here.

