
b0 and b1 are unbiased (p. 42)

Recall that least-squares estimators (b0, b1) are given by:

b1 =
n
∑

xiYi −
∑

xi

∑

Yi

n
∑

x2
i − (

∑

xi)
2 =

∑

xiYi − nȲ x̄
∑

x2
i − nx̄2

,

and

b0 = Ȳ − b1x̄.

Note that the numerator of b1 can be written
∑

xiYi − nȲ x̄ =
∑

xiYi − x̄
∑

Yi =
∑

(xi − x̄)Yi.
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Then the expectation of b1’s numerator is

E
{

∑

(xi − x̄)Yi

}

=
∑

(xi − x̄)E(Yi)

=
∑

(xi − x̄)(β0 + β1xi)

= β0

∑

xi − nx̄β0 + β1

∑

x2
i − nx̄2β1

= β1

(

∑

x2
i − nx̄2

)

Finally,

E(b1) =
E {∑(xi − x̄)Yi}
∑

x2
i − nx̄2

=
β1

(
∑

x2
i − nx̄2

)

∑

x2
i − nx̄2

= β1.
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Also,

E(b0) = E(Ȳ − b1x̄)

=
1

n

∑

E(Yi) − E(b1)x̄

=
1

n

∑

[β0 + β1xi] − β1x̄

=
1

n
[nβ0 + nβ1x̄] − β1x̄

= β0.

As promised, b1 is unbiased for β1 and b0 is unbiased for β0.
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Example in book (p. 15): x = is age of subject, Y is number

attempts to accomplish task.

x 20 55 30

y 5 12 10

For these data, the least squares line is

Ŷ = 2.81 + 0.177x.

• A x = 20 year old is estimated to need

Ŷ = 2.81 + 0.177(20) = 6.35 times to accomplish the task on

average.
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• For each year increase in age, the mean number of attempts

increases by 0.177 attempts.

• For every 1/0.177 = 5.65 years increase in age on average one

more attempt is needed.

• b0 = 2.81 is only interpretable for those who are zero years old.
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Residuals & fitted values, Section 1.6

• The ith fitted value is Ŷi = b0 + b1xi.

• The points (x1, Ŷ1), . . . , (xn, Ŷn) fall on the line y = b0 + b1x, the

points (x1, Y1), . . . , (xn, Yn) do not.

• The ith residual is

ei = Yi − Ŷi = Yi − (b0 + b1xi), i = 1, . . . , n,

the difference between observed and fitted values.

• ei estimates εi.
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Properties of the residuals (pp. 23–24):

1.
∑n

i=1 ei = 0 (from normal equations)

2.
∑n

i=1 xiei = 0 (from normal equations)

3.
∑n

i=1 Ŷiei = 0 (?)

4. Least squares line always goes through (x̄, Ȳ ) (easy to show).
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Estimating σ2, Section 1.7

σ2 is the error variance. If we observed the ε1, . . . , εn, a natural

estimator is S2 = 1
n

∑n
i=1(εi − 0)2. If we replace each εi by ei we

have σ̂2 = 1
n

∑n
i=1 e2

i . However,

E(σ̂2) =
1

n

n
∑

i=1

E(Yi − b0 − b1xi)
2

= ...a lot of hideous algebra later...

=
n − 2

n
σ2.

So in the end we use the unbiased mean squared error

MSE =
1

n − 2

n
∑

i=1

e2
i =

1

n − 2

n
∑

i=1

(Yi − b0 − b1xi)
2.
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So an estimate of var(Yi) = σ2 is

s2 = MSE =
SSE

n − 2
=

∑n
i=1(Yi − Ŷi)

2

n − 2

(

=

∑n
i=1 e2

i

n − 2

)

.

Then E(MSE) = σ2. MSE is automatically given in SAS and R.

s =
√

MSE is an estimator of σ, the standard deviation of Yi.

Example: page 15. MSE = 5.654 and
√

MSE = 2.378 attempts.

(Verify this for practice.)
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Chapter 2

So far we have only assumed E(εi) = 0 and var(εi) = σ2. We can

additionally assume

ε1, . . . , εn
iid∼ N(0, σ2).

This allows us to make inference about β0, β1, and obtain prediction

intervals for a new Yn+1 with covariate xn+1. The model is,

succinctly,

Yi
ind.∼ N(β0 + β1xi, σ

2), i = 1, . . . , n.
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Fact: Under the assumption of normality, the least squares

estimators (b0, b1) are also maximum likelihood estimators (pp.

27–30) for (β0, β1).

The likelihood of (β0, β1, σ
2) is the density of the data given these

parameters:

L(β0, β1, σ
2) = f(y1, . . . , yn|β0, β1, σ

2)

ind.
=

n
∏

i=1

f(yi|β0, β1, σ
2)

=
n
∏

i=1

1

2πσ2
exp

(

−0.5
(yi − β0 − β1xi)

2

σ2

)

= (2πσ2)−n/2 exp

(

− 1

2σ2

n
∑

i=1

(yi − β0 − β1xi)
2

)

.
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(β0, β1, σ
2) is maximized when

∑n
i=1(yi − β0 − β1xi)

2 is as small as

possible ⇒ least-squares estimators are MLEs too!

Note that the MLE of σ2 is, instead, σ̂2 = 1
n

∑n
i=1 e2

i ; the

denominator changes.
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Section 2.1: Inferences on β1

From slide 1, b1 is

b1 =

∑

(xi − x̄)Yi
∑

(xi − x̄)2
=

n
∑

i=1

[

(xi − x̄)
∑n

j=1(xj − x̄)2

]

Yi.

Thus, b1 is a weighted sum of n independent normal random

variables Y1, . . . , Yn. Therefore

b1 ∼ N

(

β1,
σ2

∑n
i=1(xi − x̄)2

)

.

We computed E(b1) before and can use standard result for the

variance of the weighted sum of independent random variables.
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So,

sd(b1) =

√

σ2

∑n
i=1(xi − x̄)2

.

Take b1, subtract off its mean, and divide by its standard deviation

and you’ve got...
b1 − β1

sd(b1)
∼ N(0, 1).

We will never know sd(b1); we estimate it by

se(b1) =

√

MSE
∑n

i=1(xi − x̄)2
.

Question: How do we make var(b1) as small as possible?

(If we do this, we cannot actually check the assumption of linearity...)
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CI and H0 : β1 = β10

Fact:
b1 − β1

se(b1)
∼ tn−2.

A (1 − α)100% CI for β1 has endpoints

b1 ± tn−1(1 − α/2)se(b1).

Under H0 : β1 = β10,

t∗ =
b1 − β10

se(b1)
∼ tn−2.

P-values are computed as usual.

Note: Of particular interest is H0 : β1 = 0, that E(Yi) = β0 and does

not depend on xi. That is H0: xi is useless in predicting Yi.
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Regression output typically produces a table like:

Parameter Estimate Standard error t∗ p-value

Intercept β0 b0 se(b0) t∗0 =
b0

se(b0)
P (|T | > |t∗0 |)

Slope β1 b1 se(b1) t∗1 =
b1

se(b1) P (|T | > |t∗1 |)

where T ∼ tn−p and p is the number of parameters used to estimate

the mean, here p = 2: β0 and β1. Later p will be the number of

predictors in the model plus one.

The two p-values in the table test H0 : β0 = 0 and H0 : β1 = 0

respectively. The test for zero slope is usually not of interest.

[Prof. Hitchcock’s SAS and R examples]
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Inference about the intercept β0

The intercept usually is not very interesting, but just in case...

Write b0 as a linear combination of Y1, . . . , Yn as we did with the

slope:

b0 = Ȳ − b1x̄ =
n
∑

i=1

[

1

n
− x̄(xi − x̄)
∑n

j=1(xj − x̄)2

]

Yi.

After some slogging, this leads to

b0 ∼ N

(

β0, σ
2

[

1

n
+

x̄2

∑n
i=1(xi − x̄)2

])

.
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Define se(b0) =

√

MSE
[

1
n + x̄2

�

n

i=1(xi−x̄)2

]

and you’re in business:

b0 − β0

se(b0)
∼ tn−2.

Obtain CIs and tests about β0 as usual...
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Estimating E(Yh) = β0 + β1xh

(e.g. inference about the regression line)

Let xh be any predictor ; say we want to estimate the mean of all

outcomes in the population that have covariate xh. This is given by

E(Yh) = β0 + β1xh.

Our estimator of this is

Ŷh = b0 + b1xh

=

n
∑

i=1

[

1

n
− x̄(xi − x̄)
∑n

j=1(xj − x̄)2
+

(xi − x̄)xh
∑n

j=1(xj − x̄)2

]

Yi

=
n
∑

i=1

[

1

n
+

(xh − x̄)(xi − x̄)
∑n

j=1(xj − x̄)2

]

Yi
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Again we have a linear combination of independent normals as out

estimator. This leads, after slogging through some math (pp. 53–54),

to

b0 + b1xh ∼ N

(

β0 + β1xh, σ2

[

1

n
+

(xh − x̄)2
∑n

i=1(xi − x̄)2

])

.

As before, this leads to a (1 − α)100% CI for β0 + β1xh

b0 + b1xh ± tn−2(1 − α/2)se(b0 + b1xh),

where se(b0 + b1xh) =

√

MSE
[

1
n + (xh−x̄)2

�
n

i=1(xi−x̄)2

]

.

Question: For what value of xh is the CI narrowist? What happens

when xh moves away from x̄?
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Prediction intervals

We discussed constructing a CI for the unknown mean at xh,

β0 + β1xh.

What if we want to find an interval that the actual value Yh is in

(versus only it’s mean) with fixed probability?

If we knew β0, β1, and σ2 this is easy:

Yh = β0 + β1xh + εh,

and so, for example,

P (β0 + β1xh − 1.96σ ≤ Yh ≤ β0 + β1xh + 1.96σ) = 0.95.

Unfortunately, we don’t know β0 and β1. We don’t even know σ, but

we can estimate all three of these.
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An interval that contains Yh with (1 − α) probability needs to

account for

1. The variability of the estimators b0 and b1; i.e. we don’t know

exactly where β0 + β1xh is, and

2. The natural variability of each response built into the model;

εh ∼ N(0, σ2).

We have

var(b0 + b1xh + εh) = var(b0 + b1xh) + var(εh)

= σ2

[

1

n
+

(xh − x̄)2
∑n

i=1(xi − x̄)2

]

+ σ2

= σ2

[

1

n
+

(xh − x̄)2
∑n

i=1(xi − x̄)2
+ 1

]
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Soooo.........

Estimating σ2 by MSE we obtain a (1− α/2)100% prediction interval

(PI) for Yh is

b0 + b1xh ± tn−2(1 − α/2)

√

MSE

[

1

n
+

(xh − x̄)2
∑n

i=1(xi − x̄)2
+ 1

]

.

Note: As n → ∞, b0
P→ β0, b1

P→ β1, tn−2(1 − α/2) → Φ−1(1 − α/2),

and MSE
P→ σ2. That is, as the sample size grows, the prediction

interval converges to

β0 + β1xh ± Φ−1(1 − α/2)σ.
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Example: Toluca data.

• Find a 90% CI for the mean number of work hours for lots of size

xh = 65 units.

• Find a 90% PI for the number of work hours for a lot of size

xh = 65 units.

• Repeat both for xh = 100 units.

• See SAS/R examples.

An aside: Working & Hotelling developed 100(1 − α)% confidence

bands for the entire regression line; see Section 2.6 for details.

Scheffe’s method can also be used here.
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