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Experimental design

Our department offers an entire course, STAT 706, on
experimental design. In Stat 705 we will focus mainly on the
analysis of common models: completely randomized designs,
randomized complete block designs, ANCOVA, multifactor studies,
hierarchical models (mixed-effects models), split-plots (e.g.
longitudinal data analysis), Latin squares, and nested models.

Some of the material in these notes is lifted from Ron Christensen’s
book Analysis of Variance, Design and Regression (Chapman and
Hall, 1996). The rest of it is paraphrased from your textbook.

Basic object of experimental design Obtain a valid estimate of

variability σ2; make the treatment inferences as sharp as feasibly
possible by making the error variability σ2 small.
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Comments

Smaller variance leads to sharper inference (e.g. tighter confidence
intervals, more precise point estimates of mean treatment
differences, etc.)

The standard assumption of independent identically distributed
error terms must be scrutinized and suitably approximated.
Randomization in an experimental design helps us approximate this
ideal situation. When treatments are randomly assigned to
homogeneous experimental units, the only systematic differences
between the units are the treatments themselves, which are
included in the statistical model as simple treatment effects.

Unlike observational studies, designed experiments allow us to
(carefully) infer causation. We deliberately impose “treatments”
on a homogeneous population and record some variable of interest.
Since the population is homogeneous, we may infer that differences
in the response are due solely to the treatments.

3 / 16



Components of an experimental design

An experimental design includes:

1 Treatments

2 Subjects

3 A subject-specific response to be recorded

4 A rule to assign treatments to subjects or vise-versa
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Completely randomized designs

In a completely randomized design, the experimenter randomly
assigns treatments to experimental units in pre-specified numbers
(often the same number of units receives each treatment yielding a
balanced design).

Every experimental unit initially has an equal chance of receiving a
particular treatment.

The data collected is typically analyzed via a one-way (or
multi-way) ANOVA model.
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Quantifying noise pollution on mood

Example: Denise has a pool of nT = 8 subjects to participate in
an experiment. The 8 people are randomly drawn from a
psychology class she is teaching and asked to participate, so
inferences may drawn for the population of psychology students in
her 3 PM class.

Denise subjects 4 of the students, chosen uniformly from the initial
8 via a random number generator, to a tape of dogs loudly barking
for a period of 30 minutes. The other 4 students listen to silence
for 30 minutes.

At the end of the experiment, Denise records the mood of
participants on a scale from 1 (really bad, angry) to 10 (happy,
content).

6 / 16



Denise, continued

Denise uses the one-way ANOVA model

Yij = µi + εij

where i = 1, 2 for the treatment effects (dogs barking and silence,
respectively) and j = 1, . . . , 5 for the replications, to model subject
mood after being exposed to the treaments. She, not surprisingly,
finds a 95% confidence interval for µ2 − µ1 to be (2.2, 4.5). On
average, those psychology students subjected to silence were 2.2 to
4.5 “mood points” higher than those subjected to dogs barking.
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Randomized complete block designs

Say there are b treatments to be considered. In a randomized
complete block design, the experimenter constructs a blocks of b
homogeneous subjects and (uniformly) randomly allocates the b
treatments to everyone in each block. The treatments are assumed
to act independent of the blocks, and the overall error variability
σ2 is reduced as some variability will be explained by the block
differences. Initially we consider fixed block effects, but will explore
random block effects shortly.

A simple randomized complete block design is analyzed as a
two-way ANOVA without replication. A valid estimate of σ2 is
obtained through blocking and assuming an additive model.
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Aspects of a R.C.B. design

The key to designing a good R.C.B. design is to pick blocks so
that there is little within block variability. If all treatments cannot
be administered in a block, we get an incomplete block design.

Blocking variables are categorized into two types by your book,
those variables that are characteristics of the experimental units
(gender, age, income, etc.), and those variables that are associated
with the experiment (observer, machine used, etc.)
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Noise pollution, continued

Denise refines her experiment by considering blocks defined by the
number of dogs owned by students: (i = 1, 2, 3, 4 for no dogs, 1
dog, 2 dogs, 3 or more dogs); among her nT = 8 participants she
now requires two from each of the a = 4 blocking categories.

For each of the a = 4 blocks of b = 2 subjects she makes one
endure the barking-tape and the other one gets silence. She
proposes the following simple model for the mood scores:

Yij = µ+ αi + βj + εij ,

where j = 1, 2 denotes treatment.
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Denise, continued

Denise finds the confidence interval for µ̄•2 − µ̄•1 = β2 − β1 now
to be (2.8, 3.4). Again, she concludes there is a significant mean
mood difference in subjects exposed to dogs barking versus not,
and this difference is more precise than before, as the difference is
examined within blocks. The p-value associated with the blocking
variable “number of dogs” is 0.03 indicating that blocking made a
significant difference in the analysis (i.e. we would reject that the
blocking effect is null).

Notice that we are assuming that there is no interaction between
being exposed to dogs barking or not and number of dogs owned.
Is this assumption reasonable? Whether you think so or not, it can
be tested using Tukey’s test for additivity.
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Textbook’s notation

Note that in Section 21.2 your book rather uses the
parameterization

Yij = µ+ ρi︸︷︷︸
block
effects

+ τj︸︷︷︸
treatment

effects

+εij .

Using this notation instead, we are interested in testing H0 : τj = 0
and, if we reject, examining linear combinations of treatments
L(c) =

∑b
j=1 cjτj . The test for whether blocking effectively

reduces variability H0 : ρi = 0 is also of (lesser) interest. Your
textbook redoes everything in Section 21.3 in terms of the new
parameterization, but nothing has really changed from our
standard two-way model and approach except for naming one
factor “treatment” and the other one “blocks.”
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Another model...

What does this analysis have in common with an ANCOVA
(coming up in Chapter 22) model

Yij = µ+ γxij + τj + εij ,

where xij is the actual number of dogs (owned by the ith subject
receiving treatment j) as a concomitant variable? Which model is
simpler (requires fewer parameters?) Which is to be preferred?
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Diagnostics for R.C.B. designs

1 Residuals eij versus the block index i may be used to check for
unequal error variance within blocks. Residuals eij vs. the
treatment index j may be used to check for unequal error
variance by treatment. Also look at eij vs. µ̂ij (automatic in
SAS), normal probability plot of {eij}, and the deleted
residuals tij to check for outliers.

2 An interaction plot Yij versus j (or i) may be used to check
for a possible interaction between the blocking variate and the
treatments. NOTE: No replication of treatments within
blocks means there is only one observation to estimate µ̂ij ,
µ̂ij = Yij . Therefore, when there truly is no interaction
present, we expect to see the deviation from parallel curves to
be much greater than when we have replication, unless σ2 is
very small relative to treatment/blocking effects. Tukey’s test
for additivity is a formal way to check the appropriateness of
model IV with a p-value.
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Generalization

This simple model can be extended to multi-factor treatment
structures (21.6 and 21.8), although by definition, in a R.C.B.
design, there is no interaction between blocks and treatments, and
the “replication” is achieved only through blocking.
A generalized randomized block design (Sec. 21.7) assigns n
subjects within each block instead of only one, yielding replication.
In this model, an interaction between treatments and blocks can
be tested as usual, and in fact is given automatically as a Type III
test in SAS. Standard methods apply!
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Noise pollution, finished

Denise decides that she would like to test the effect of leaf-blowers
as well. Now she selects nT = 16 students to “participate” and
subjects each block of a = 4 students sorted according to how
many dogs they own (i = 1, 2, 3, 4 as before) to one of:
j = 1, k = 1 nothing, j = 2, k = 1 dogs barking, j = 1, k = 2 a
running leaf-blower nearby, or j = 2, k = 2 both a tape of dogs
barking and the leaf-blower. She used the following model:

Yijk = µ+ ρi + αj + βk + (αβ)jk + εijk .

The model is fit as a three-way ANOVA and interpreted as usual.
If there is no interaction between treatments and blocks (again,
testable via Tukey), the model is valid and contrasts in the effects
of interest, for example µ̄•2k − µ̄•1k for k = 1, 2, are examined. If
(αβ)jk = 0 is accepted, simply µ̄•2• − µ̄•1• = α2 − α1, may be
examined.

This is a R.C.B. design with factorial treatments.
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