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Balanced vs. unbalanced data

Balance is nice if calculating by hand! Typically, data are not
balanced. Why?

Observational studies – don’t get to impose treatments on
groups of same size.

Subjects may “drop out” of a planned experiment.

Cost considerations – some treatments more expensive.

Notation and model is exactly the same for balanced (nij = n) and
unbalanced:

Yijk = µ+ αi + βj + (αβ)ij + εijk .

Here, i = 1, . . . , a, j = 1, . . . , b, and k = 1, . . . , nij .

I have already covered two-way ANOVA assuming unbalanced data.
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Fitting

The model is fit as a regression model. There are (a− 1) binary
predictors for factor A, (b − 1) binary predictors for factor B, and
(a− 1)(b − 1) interaction predictors obtained by multiplying factor
A predictors by factor B predictors. See example, pp. 954–957.

In general, SSTR 6= SSA + SSB +SSAB as defined in Chapter 19;
orthogonality is lost in unbalanced designs.
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Type III tests

We treat model as regression model with
(a− 1) + (b− 1) + (a− 1)(b− 1) = ab− 1 predictors, but we only
test dropping blocks of predictors from this full model V
corresponding to A, B, or AB, using general nested linear
hypotheses (“big model / little model”), as in regression. Recall
nT =

∑a
i=1

∑b
j=1 nij . SAS gives Type III tests for

FA =
MSE (A|B,AB)

MSE
∼ F (a− 1, nT − dfE ) if H0 : αi = 0.

FB =
MSE (B|A,AB)

MSE
∼ F (b − 1, nT − dfE ) if H0 : βi = 0.

FAB =
MSE (AB|A,B)

MSE
∼ F ((a−1)(b−1), nT−dfE ) if H0 : (αβ)ij = 0.

Only the last test leaves a hierarchical model (additive model IV).
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Modeling strategy

Say a = 2 and b = 3. If accept H0 : (αβ)ij = 0 then can look at,

e.g., L1 = β1 − 1
2 (β2 + β3) and L2 = β2 − β3 via

lsmestimate B "L1" 1.0 -0.5 -0.5,

"L2" 0.0 1.0 -1.0 / adjust=bonf;

If reject H0 : (αβ)ij = 0 then look at linear combinations of
µij = µ+ αi + βj + (αβ)ij . For example, maybe µ21 − µ11,
µ22 − µ12, and µ23 − µ13 (differences in A over levels of B).

lsmestimate A*B "mu21-mu11" -1 0 0 1 0 0,

"mu22-mu12" 0 -1 0 0 1 0,

"mu23-mu13" 0 0 -1 0 0 1 / adjust=bonf;

Note that Tukey still works for pairwise comparisons, but FER < α
rather than FER = α.

Note: can also work directly with model parameters using
estimate.
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Bone growth, pp. 954–959

Synthetic growth hormone given to nT = 14 children, all
hormone deficient and short.

Yijk is difference in growth rate during month of treatment vs.
previous non-treatment in cm/month.

i = 1, 2 is gender (male/female) and j = 1, 2, 3 is bone
development (severely depressed, moderately depressed, mildly
depressed).

No randomization of treatments employed; treatments
(gender and level of depression) are observational here. Every
child gets growth hormone.
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Analysis in SAS

data growth;

input ratediff gender bonedev @@;

datalines;

1.4 1 1 2.4 1 1 2.2 1 1 2.1 1 2 1.7 1 2 0.7 1 3 1.1 1 3

2.4 2 1 2.5 2 2 1.8 2 2 2.0 2 2 0.5 2 3 0.9 2 3 1.3 2 3

;

* get interaction plot;

* table 23.4 (p. 959) is Type III SS Table;

proc glm plots=all;

class gender bonedev;

model ratediff=gender|bonedev;

* with p=0.80 we can drop the interaction and look at main effects;

proc glm plots=all;

class gender bonedev;

model ratediff=gender bonedev;

lsmeans bonedev / pdiff adjust=tukey alpha=0.05 cl;

* removing gender as well;

proc glm plots=all;

class gender bonedev;

model ratediff=bonedev;

lsmeans bonedev / pdiff adjust=tukey alpha=0.05 cl;
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Chapter 24: Multi-factor studies

Say we have three factors: A, B, and C. A full, three-way
interaction model is

Yijkl = µ+αi +βj +γk + (αβ)ij + (αγ)ik + (βγ)jk + (αβγ)ijk + εijkl .

Here i = 1, . . . , a, j = 1, . . . , b, and k = 1, . . . , c; have replicates
l = 1, . . . , nijk . Balanced if nijk = n for all i , j , k .

That’s a lot of parameters!

SAS sets parameters equal to zero that have indices i = a, j = b,
or k = c.

Section 24.2 has some text on interpreting the model; pp.
998–1002.
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A model-based approach to multi-way ANOVA

Use interaction plots and Type III tests for find a simpler
hierarchical model to explain the data. Check residuals vs. fitted
values (heteroscedascity?), histogram of residuals (skew?
bimodality?), and normal probability plot to assess model
adequacy. Decide what sorts of paired differences or linear
combinations you want to look at.

For example, if end up with A, B, C, and B*C, you can look at
main effects in A, and B*C interaction effects. These might
include looking at all differences in main effects of A
µ̄i1•• − µ̄i2•• = αi1 − αi2 (use Tukey), and looking at slices
µ̄•j1k − µ̄•j2k for pairs 1 ≤ j1 < j2 ≤ b.

The lowest order interactions in the effect left in the model
determine which pairwise differences make sense to look at!
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Hierarchical model building

Recall with hierarchical model building, if we have an interaction,
we must include all lower order effects that comprise the
interaction. So if we have a three way interaction A ∗ C ∗ D, we
must also include the effects A, C , D, A ∗ C , A ∗D, and C ∗D. In
SAS this is accomplished including A|C |D in the model statement.

A reasonable approach to model building is pare down higher order
interactions until you have a model with largely significant effects
in it, i.e. “backwards elimination.” This approach incurs the
problem of multiple hypothesis testing, but can be somewhat
eleviated using Kimball’s inequality, or else by considering one
overall test for dropping several effects at once; I suggest the latter.
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Averaged effects

Regardless of the final model chosen, one can always resort to the
examination of so-called “averaged effects.” Let’s consider three
factors A, B, and C for simplicity. The averaged effect for A = i is
given by

µ̄i•• =
1

bc

b∑
j=1

c∑
k=1

µijk ,

where µijk = E (Yijkm) under your final model. This is the mean
response at A = i averaged over the levels of B and C, and are
provided by SAS lsmeans A. This averaging assumes that all
factors levels are “weighted equally.”
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Differences in averaged effects

We may furthermore look at differences in averaged effects, e.g.
µ̄2•• − µ̄1••. These are also interpreted as treatment differences
averaged over the other effects, e.g.

µ̄2•• − µ̄1•• =
1

bc

b∑
j=1

c∑
k=1

[µ2jk − µ1jk ].

You can obtain these from adding pdiff to your lsmeans
statement. Both lsmeans and lsmestimate deal with averaged
effects. The rest of the averaged effects for the three-factor model
are

µ̄•j• =
1

ac

a∑
i=1

c∑
k=1

µijk , µ̄••k =
1

ab

a∑
i=1

b∑
j=1

µijk ,

µ̄ij• =
1

c

c∑
k=1

µijk , µ̄i•k =
1

b

b∑
j=1

µijk , µ̄•jk =
1

a

a∑
i=1

µijk .

You can look at these effects and obtain pairwise differences by
including, e.g. lsmeans A*B / pdiff adjust=tukey cl;
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Simplification when higher order interactions are dropped

Note, if A does not share any interactions with other factors, e.g.
the model µijk = µ+ αi + βj + γk + (βγ)jk fits, then
µ̄2•• − µ̄1•• = α2 − α1. This idea generalizes to the other factors
as well.

However, if the model µijk = µ+ αi + βj + γk + (αβ)ij + (βγ)jk
fits, then µ̄2•• − µ̄1•• 6= α2 − α1. In fact,
µ̄2•• − µ̄1•• = α2 − α1 + 1

b

∑b
j=1(αβ)2j − 1

b

∑b
j=1(αβ)1j .

In general, differences in the A treatments can vary across the
other two factors in a complex way. Ideally, one would then look
at, e.g. µ̄2jk − µ̄1jk for different values of j and k to see where
treatment A differences occur. It can happen that the averaged
difference µ̄2•• − µ̄1•• is not significantly non-zero, yet one or more
of the µ̄2jk − µ̄1jk are significantly non-zero. You can examine the
individual differences using estimate.
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Example where a = b = c = 2

Say through backward elimination, the model A, B, C , A ∗ B,
B ∗ C is shown to adequately describe the data; i.e.
µijk = µ+ αi + βj + γk + (αβ)ij + (βγ)jk . Then in SAS the A ∗ B
effects are listed in the order (A,B) = (1, 1), (1, 2), (2, 1), and
(2, 2), same with the B ∗ C effects. Since A does not interact with
C , we only need to examine A differences over B. To visualize this,
note that for any k

µ2jk − µ1jk = µ + α2 + βj + γk + (αβ)2j + (βγ)jk − [µ + α1 + βj + γk + (αβ)1j + (βγ)jk ]

= α2 − α1 + (αβ)2j − (αβ)1j ,

which is independent of k , i.e. independence of factor C .

There are only two of these to look at, namely
α2 − α1 + (αβ)21 − (αβ)11, how treatment A differs when B = 1,
and α2 − α1 + (αβ)22 − (αβ)12, how treatment A differs when
B = 2.
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Example, continued

You can get these either out of estimate directly, or
lsmestimate by noting that for this model
µ̄2j• − µ̄1j• = µ2jk − µ1jk = α2 − α1 + (αβ)2j − (αβ)1j .

The command estimate works with all of the effects in the model
that you list, i.e. the αi ’s, βj ’s, γk ’s, (αβ)ij ’s, etc., whereas
lsmestimate works with the averaged effects µ̄i••, µ̄•j•, µ̄••k ,
µ̄ij•, etc.
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Final comments

Output from lsmestimate is essentially always interpratable,
either as a conditional or averaged linear combination, depending
on the interaction structure. Similarly, output from lsmeans is
also interpretable in terms of averaged effects. Output from
estimate will be interpretable if you are careful.

Don’t be afraid to write down the model and play around with the
math. This is how you can find out when estimate and
lsmestimate give you the same results!
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Interaction plots for multi-way models

For multi-factor models, we can look at averaged (or marginal)
interaction plots obtained in proc glm by simply fitting a model
with only two of the factors, e.g. get each of model=A|B;,
model=A|C;, and model=B|C;

It is also possible to get conditional interaction plots directly out of
SAS.

Say you have three factors, A, B, and C, each with two levels. The
averaged plot for A and B uses Ȳij••; there are two conditional
plots for A and B, one at k = 1 uses Ȳij1• and the other at k = 2
uses Ȳij2•. Averaged plots can tell you whether two-way
interactions are necessary; conditional plots can tell you whether
two-way and higher interactions are necessary, but are a pain to
interpret without some practice. See Section 24.2 (pp. 998–1000).
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Averaged interaction plots for some models

Model A B C has A/B, A/C, and B/C averaged plots

µ̄ij• = µ+ αi + βj + γ̄ parallel

µ̄i•k = µ+ αi + β̄ + γk parallel

µ̄•jk = µ+ ᾱ + βj + γk parallel

Model A B C A*B has A/B, A/C, and B/C averaged plots

µ̄ij• = µ+ αi + βj + γ̄ + (αβ)ij not parallel

µ̄i•k = µ+ αi + β̄ + γk + (αβ)i• parallel

µ̄•jk = µ+ ᾱ + βj + γk + (αβ)•j parallel

Model A B C A*B B*C has A/B, A/C, and B/C averaged plots

µ̄ij• = µ+ αi + βj + γ̄ + (αβ)ij + (βγ)j• not parallel

µ̄i•k = µ+ αi + β̄ + γk + (αβ)i• + (βγ)•k parallel

µ̄•jk = µ+ ᾱ + βj + γk + (αβ)•j + (βγ)jk not parallel
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Body fat

Effects of gender (A), body fat (%, B), and smoking history (C) of
subjects on exercise tolerance Yijkl is minutes of bicycling until
fatigue, were measured in small study of nT = 24 subjects 25–35
years old.

Study happens to be balanced. Partial analysis on pp. 1005–1012.
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Time until fall off bike, SAS analysis

data tol; * 1=male vs. female, 1=low fat vs. high, 1=light smoking vs. heavy;

input tol gender fat smoking @@;

datalines;

24.1 1 1 1 29.2 1 1 1 24.6 1 1 1

20.0 2 1 1 21.9 2 1 1 17.6 2 1 1

14.6 1 2 1 15.3 1 2 1 12.3 1 2 1

16.1 2 2 1 9.3 2 2 1 10.8 2 2 1

17.6 1 1 2 18.8 1 1 2 23.2 1 1 2

14.8 2 1 2 10.3 2 1 2 11.3 2 1 2

14.9 1 2 2 20.4 1 2 2 12.8 1 2 2

10.1 2 2 2 14.4 2 2 2 6.1 2 2 2

;

* "conditional" interaction plot;

proc sgpanel;

panelby gender / rows=1 columns=2;

scatter x=fat y=tol / group=smoking;

reg x=fat y=tol / group=smoking;

* fat*smoking averaged over gender;

proc sgplot;

title "averaged over gender";

scatter x=fat y=tol / group=smoking;

reg x=fat y=tol / group=smoking;

* can also get them the usual way through proc glm;

* fat by gender interaction probably not needed;

proc glm plots=all; class gender fat smoking; model tol=gender|fat;

* gender by smoking interaction probably not needed;

proc glm plots=all; class gender fat smoking; model tol=gender|smoking;

* fat by smoking interaction probably needed;
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One overall F-test for dropping effects

* saturated model with all possible interactions;

* we can drop any one of gender*fat, gender*smoking, or gender*fat*smoking;

proc glm data=tol outstat=full;

class gender fat smoking;

model tol=fat|smoking|gender / solution;

run;

* let’s see if we can drop all three of these effects at the same time;

proc glm data=tol outstat=reduced;

class gender fat smoking;

model tol=gender fat|smoking;

run;

* p-value for nested hypothesis in SAS;

data test1; set full reduced; if _SOURCE_="ERROR"; * get error SS and DF;

proc means data=test1 noprint; var ss df; output out=test2 min=minss mindf max=maxss maxdf;

data nested; set test2; fstar=((maxss-minss)/(maxdf-mindf))/(minss/mindf);

pvalue=1-cdf(’f’,fstar,maxdf-mindf,mindf);

proc print; run;
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Analysis of reduced model

proc glm plots=all;

class gender fat smoking;

model tol=gender fat|smoking;

lsmeans gender / pdiff adjust=tukey alpha=0.05 cl;

lsmeans fat*smoking / pdiff adjust=tukey alpha=0.05 cl;

proc glimmix;

class gender fat smoking;

model tol=gender fat|smoking;

lsmestimate gender "gender" 1 -1 / adjust=t alpha=0.05 cl;

lsmestimate fat*smoking "diff1" -1 1 0 0,

"diff2" 0 0 -1 1 / adjust=bon alpha=0.05 cl;

* for illustration consider a model with G F S G*F and F*S;

* since gender DOES NOT interact with smoking, gender *differences* only change with fat type;

proc glimmix;

class gender fat smoking;

model tol=gender fat smoking gender*fat fat*smoking;

estimate "gender diff @ fat=1" gender -1 1 gender*fat -1 0 1 0;

estimate "gender diff @ fat=2" gender -1 1 gender*fat 0 -1 0 1;

lsmestimate gender*fat "gender diff @ fat=1" -1 0 1 0; * same as above!;

lsmestimate gender*fat "gender diff @ fat=1" 0 -1 0 -1;
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