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Poisson regression

Regular regression data {(xi ,Yi )}ni=1, but now Yi is a positive
integer, often a count: new cancer cases in a year, number of
monkeys killed, etc.

For Poisson data, var(Yi ) = E (Yi ); variability increases with
predicted values. In regular OLS regression, this manifests
itself in the “megaphone shape” for ri versus Ŷi .

If you see this shape, consider whether the data could be
Poisson (e.g. blood pressure data, p. 428).

Any count, or positive integer could potentially be
approximately Poisson. In fact, binomial data where ni is
really large, is approximately Poisson.
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Log and identity links

Let Yi ∼ Pois(µi ).
The log-link relating µi to x′iβ is used most often:

Yi ∼ Pois(µi ), logµi = β0 + xi1β1 + · · ·+ xi ,p−1βp−1,

yielding what is commonly called the Poisson regression model.

The identity link can also be used

Yi ∼ Pois(µi ), µi = β0 + xi1β1 + · · ·+ xi ,p−1βp−1.

Both can be fit in PROC GENMOD.
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Interpretation for log-link

The log link log(µi ) = x′iβ is most common:

Yi ∼ Pois(µi ), µi = eβ0+β1xi1+···+βkxik ,

or simply Yi ∼ Pois
(
eβ0+β1xi1+···+βkxik

)
.

Say we have k = 3 predictors. The mean satisfies

µ(x1, x2, x3) = eβ0+β1x1+β2x2+β3x3 .

Then increasing x2 to x2 + 1 gives

µ(x1, x2 + 1, x3) = eβ0+β1x1+β2(x2+1)+β3x3 = µ(x1, x2, x3)eβ2 .

In general, increasing xj by one, but holding the other predictors
the constant, increases the mean by a factor of eβj .
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Example: Crab mating

Data on female horseshoe crabs.

C = color (1,2,3,4=light medium, medium, dark medium,
dark).

S = spine condition (1,2,3=both good, one worn or broken,
both worn or broken).

W = carapace width (cm).

Wt = weight (kg).

Sa = number of satellites (additional male crabs besides her
nest-mate husband) nearby.

Using logistic regression we explored whether a female had one or
more satellites. Using Poisson regression we can model the actual
number of satellites directly.
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Looking at the data...

We initially examine width as a predictor for the number of
satellites. A raw scatterplot of the numbers of satellites versus the
predictors does not tell us much. Superimposing a smoothed fit
helps & shows an approximately linear trend in weight.

Note that variability increases with width and weight!

options nodate;

proc sgscatter data=crabs;

title "Default loess smooth on top of data";

plot satell*(width weight) width*weight / loess;
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Three competing models using width as predictor

We’ll fit three models using proc genmod.

Sai ∼ Pois(eβ0+β1Wi ),

Sai ∼ Pois(β0 + β1Wi ),

and
Sai ∼ Pois(eβ0+β1Wi+β2W

2
i ).
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SAS code

SAS code:

data crab; input color spine width satell

weight;

weight=weight/1000; color=color-1;

width_sq=width*width;

datalines;

3 3 28.3 8 3050

4 3 22.5 0 1550

...et cetera...

5 3 27.0 0 2625

3 2 24.5 0 2000

;

proc genmod;

model satell = width / dist=poi link=log ;

proc genmod;

model satell = width / dist=poi link=identity ;

proc genmod;

model satell = width width_sq / dist=poi link=log ;

run;

Output from fitting the three Poisson regression models:
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SAS output

The GENMOD Procedure

Model Information

Data Set WORK.CRAB

Distribution Poisson

Link Function Log

Dependent Variable satell

Number of Observations Read 173

Number of Observations Used 173

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 171 567.8786 3.3209

Scaled Deviance 171 567.8786 3.3209

Log Likelihood 68.4463

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -3.3048 0.5422 -4.3675 -2.2420 37.14 <.0001

width 1 0.1640 0.0200 0.1249 0.2032 67.51 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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SAS output

The GENMOD Procedure

Model Information

Data Set WORK.CRAB

Distribution Poisson

Link Function Identity

Dependent Variable satell

Number of Observations Read 173

Number of Observations Used 173

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 171 557.7083 3.2615

Scaled Deviance 171 557.7083 3.2615

Log Likelihood 73.5314

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -11.5321 1.5104 -14.4924 -8.5717 58.29 <.0001

width 1 0.5495 0.0593 0.4333 0.6657 85.89 <.0001

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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SAS output

The GENMOD Procedure

Model Information

Data Set WORK.CRAB

Distribution Poisson

Link Function Log

Dependent Variable satell

Number of Observations Read 173

Number of Observations Used 173

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 170 558.2359 3.2837

Scaled Deviance 170 558.2359 3.2837

Log Likelihood 73.2676

Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-

Parameter DF Estimate Error Limits Square Pr > ChiSq

Intercept 1 -19.6525 5.6374 -30.7017 -8.6034 12.15 0.0005

width 1 1.3660 0.4134 0.5557 2.1763 10.92 0.0010

width_sq 1 -0.0220 0.0076 -0.0368 -0.0071 8.44 0.0037

Scale 0 1.0000 0.0000 1.0000 1.0000

NOTE: The scale parameter was held fixed.
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Inference

Write down the fitted equation for the Poisson mean from
each model.

How are the regression effects interpreted in each case?

How would you pick among models? Recall

AIC = −2[L(β̂; y)− p].

For log-link quadratic, identity-link linear, and log-link linear
we have

−2(73.27− 3) = −140.54,

−2(73.53− 2) = −143.06,

−2(68.44− 2) = −132.88.

Are there any potential problems with any of the models?
How about prediction?
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Offsets

Sometimes counts are collected over different amounts of
time, space...

For example, we may have numbers of new cancer cases per
month from some counties, and per year from others.

If time periods are the same from for all data, then µi is the
mean count per time period.

Otherwise we specify µi as a rate per unit time period and
have data in the form {(xi ,Yi , ti )}ni=1 where ti is the amount
of time that the Yi accumulates over.

Model: Yi ∼ Pois(tiµi ).

For the log-link we have

Yi ∼ Pois
(

ex
′
iβ+log(ti )

)
.

log(ti ) is called an offset.
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Ache monkey hunting

Data on the number of capuchin monkeys killed by n = 47 Ache
hunters over several hunting trips were recorded; there were 363
total records.

The hunting process involves splitting into groups, chasing
monkeys through the trees, and shooting arrows straight up.

Let Yi be the total number of monkeys killed by hunter i of age ai
(i = 1, . . . , 47) over several hunting trips lasting different amounts
of days; total number of days is ti . Let µi be the hunter i ’s kill
rate (per day).

Yi ∼ Pois(µi ti ),

where
logµi = β0 + β1ai + β2a2i .

A quadratic effect is included to accommodate a “leveling off”
effect or possible decline in ability with age. Of interest is when
hunting ability is greatest; hunting prowess contributes to a man’s
status within the group.

15 / 26



Aiming for...
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...dinner!
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SAS code

data ache; input age kills days @@; logdays=log(days); rawrate=kills/days;

datalines;

67 0 3 66 0 89 63 29 106 60 2 4

61 0 28 59 2 73 58 3 7 57 0 13

56 0 4 56 3 104 55 27 126 54 0 63

51 7 88 50 0 7 48 3 3 49 0 56

47 6 70 42 1 18 39 0 4 40 7 83

40 4 15 39 1 19 37 2 29 35 2 48

35 0 35 33 0 10 33 19 75 32 9 63

32 0 16 31 0 13 30 0 20 30 2 26

28 0 4 27 0 13 25 0 10 22 0 16

22 0 33 21 0 7 20 0 33 18 0 8

17 0 3 17 0 13 17 0 3 56 0 62

62 1 4 59 1 4 20 0 11

;

proc sgscatter data=ache; * not weighted by how many days...;

plot rawrate*age / loess;

proc genmod data=ache;

model kills=age age*age / dist=poisson link=log offset=logdays;

output out=out p=p reschi=r;

proc sgscatter data=out;

plot r*(p age) / loess; run;
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Raw rates with loess smooth
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SAS output

Model Information

Data Set WORK.ACHE

Distribution Poisson

Link Function Log

Dependent Variable kills

Offset Variable logdays

Number of Observations Read 47

Number of Observations Used 47

Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 44 186.0062 4.2274

Scaled Deviance 44 186.0062 4.2274

Pearson Chi-Square 44 197.7941 4.4953

Scaled Pearson X2 44 197.7941 4.4953

Log Likelihood 98.7129

Full Log Likelihood -124.8921

AIC (smaller is better) 255.7841

AICC (smaller is better) 256.3423

BIC (smaller is better) 261.3346

Algorithm converged.
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SAS output

Analysis Of Maximum Likelihood Parameter Estimates

Standard Wald 95% Confidence Wald

Parameter DF Estimate Error Limits Chi-Square Pr > ChiSq

Intercept 1 -5.4842 1.2448 -7.9240 -3.0445 19.41 <.0001

age 1 0.1246 0.0568 0.0134 0.2359 4.82 0.0281

age*age 1 -0.0012 0.0006 -0.0024 0.0000 3.78 0.0520

Scale 0 1.0000 0.0000 1.0000 1.0000

The fitted monkey kill rate is

µ(a) = exp(−5.4842 + 0.1246a− 0.0012a2).

At what age, typically, is monkey hunting ability maximized?
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Goodness of fit

The Pearson residual is

rPi
=

Yi − µ̂i√
µ̂i

.

As in logistic regression, the sum of these gives the Pearson GOF
statistic

X 2 =
n∑

i=1

r2Pi
.

X 2 ∼ χ2
n−p when the regression model fits. Alternative is

“saturated model.”

Deviance statistic is

D2 = −2
n∑

i=1

[Yi log(µ̂i/Yi ) + (Yi − µ̂i )] .

Replace µ̂i by µ̂i ti when offsets are present. D2 ∼ χ2
n−p when the

regression model fits. Page 621 defines “deviance residual” devi .
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Diagnostics

From SAS we can get Cook’s distance ci (cookd), leverage hi

(h), predicted Ŷi = ex
′
i β̂ (p) Pearson residual rPi

(reschi; have
variance < 1), studentized Pearson residual rSPi

(stdreschi;
have variance = 1).

Residual plots have same problems as logistic regression for
counts Yi close to zero. Think of when the normal
approximation to the Poisson works okay...same idea here.

Can do smoothed versions; Ache hunting data on next slide.
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Model doesn’t fit very well; var(rPi
) < 1...
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Comment on blocking

The variability in the Pearson residuals is much higher than what
we should see; there are many poorly fit observations. This
extra-Poisson variability is often referred to as “overdispersion.”

Recall that in Chapters 21, 25, and 27 we discussed blocking on
individuals to reduce variability. The Ache hunters actually took
part in many hunting trips, i.e. there are repeated measures on
each hunter. We can instead consider hunting trip j from hunter i
of length Lij days, and posit a mixed model

Yij ∼ Pois(λijLij), log(λij) = β0 + β1ai + β2a2i + ui ,

where
u1, . . . , u47

iid∼ N(0, σ2)

are random hunter ability effects.

This model, fit in proc glimmix, reduces variability by
appropriately blocking the repeated measures on hunter. We’ll fit
this model in the next lecture on GLMM’s.
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Miller Lumber

Miller lumber is large retailer of lumber and other household
supplies. During a two-week period customers were surveyed. The
store wanted to model the numbers Yi of individuals coming from
n = 110 census tracts over the same two-week period as a function
of

x1 number of housing units.

x2 average income in $.

x3 average housing unit age in years.

x4 distance to nearest competitor in miles.

x5 distance to Miller Lumber in miles.

These data are analyzed on pp. 621–623 (Table 14.14). We will
also analyze these data if time permits.
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