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Chapter 11: Models for Matched Pairs

Example: Prime minister approval (PMA) data. n++ = 1600
voting age British citizens were asked if they approved of the
Prime Minister. The same people were asked again 6 months later.
The 1600 are cross classified according to their two (binary)
responses (X ,Y ):

Second survey
First survey Approve Disapprove
Approve 794 150

Disapprove 86 570

Here, each person is matched with his or her self. This is also
called repeated measures data.

Here we see people tend to approve both times or disapprove both
times more often than change their opinion. Question: of those
that change their opinion, which direction do they tend to go?
Hint: 150

150+794 ≈ 0.16 & 86
86+570 ≈ 0.13.
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11.1 Comparing dependent proportions

Let πab = P(X = a,Y = b) and nab be the number of such pairs.

Second survey
First survey Approve Y = 1 Disapprove Y = 2

Approve X = 1 π11 & n11 π12 & n12
Disapprove X = 2 π21 & n21 π22 & n22

We assume (n11, n12, n21, n22) ∼ mult{n++, (π11, π12, π21, π22)}.
When π1+ = π+1 then P(X = 1) = P(Y = 1) and we have
marginal homogeneity. This is of course equivalent to
P(X = 2) = P(Y = 2) by looking at complimentary events.

In the prime minister approval data, this would indicate that the
proportion of people that approve at time zero is equal to the
proportion that approve at 6 months. Does it imply that no one
has changed their mind?

Let pab = nab/n++ be the sample proportion in each cell.
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How does the proportion change?

Define the difference δ = π+1 − π1+ = P(Y = 1)− P(X = 1).
What does this measure for the prime minister approval data?

δ is estimated by

d = p+1 − p1+ =
n11 + n21 − (n11 + n12)

n++
.

Considering the covariance for multinomial vector elements, we
have a (1− α)100% CI for δ is

d ± zα/2σ̂(d),

where

σ̂(d) =
√

[(p12 + p21)− (p12 − p21)2]/n.
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11.1.2 Formal test of H0 : δ = 0

To test H0 : δ = 0, i.e. H0 : P(X = 1) = P(Y = 1), the Wald test
statistic is z0 = d/σ̂(d). The score test statistic is

z0 =
n21 − n12√
n21 + n12

.

A p-value for testing H0 : δ = 0 is P(|Z | > |z0|); this latter test is
McNemar’s test.

For the PMA data, a 95% CI for δ is (−0.06,−0.02). The number
of people approving of the prime minister has dropped by 2% to
6%. The McNemar (score) test statistic for testing
H0 : P(X = 1) = P(Y = 1) is z0 = −4.17 yielding a p-value of
0.00003.

Does this mean that between 2% and 6% of the people have
changed their minds? (Answer: no).
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11.1.4 Using correlation to increase precision

By having a person serve as their own control we increase the
precision with which this difference is estimated (relative to two iid
samples at an initial time and 6 months later). In some sense it is
easier to measure how peoples attitudes are changing by looking
directly at changes within an individual instead of considering
separate populations at time zero and 6 months later.
Note that

n var(d) = π1+(1− π1+) + π+1(1− π+1)− 2(π11π22 − π12π21).

When the response is positively correlated, π11π22 > π12π21 and
the variance is smaller relative to two independent samples.
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Within vs. across individuals

McNemar’s test statistic is not a function of diagonal elements,
but the sample difference d and σ̂(d) are. The diagonal elements
contribute to how correlated Yi1 and Yi2 are, i.e. the tendency for
people to not change their mind on the PM:
P(Yi1 = Yi2 = 1) = n11/n++ and P(Yi1 = Yi2 = 2) = n22/n++.

Of those that make a switch, the off-diagonal elements get at the
direction and strength of the switch.

We may be interested in the how the odds of approving change
over 6 months for a randomly selected individual from the
population (conditional inference), or we may be interested in how
the odds of approval change across the the two populations:
everyone at time zero, and everyone at 6 months.
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Marginal logit approach

We can recast this as a marginal logit model

logit P(Yij = 1) = µ+ β′xij ,

where xi1 = 0 and xi2 = 1 are “before” and “after” covariates. For
the PMA example, the covariates represent time.

In general, xij are any covariates of interest, but the correlation
between Yi1 and Yi2, α = corr(Yi1,Yi2) must be accounted for in
some way in estimating β. For the PDA example this correlation is
quite high, the polychoric correlation is estimated to be ρ̂ = 0.90
with σ̂(ρ̂) = 0.01.

We will discuss marginal categorical models that account for such
correlation, or clustering, fit via GEE in Chapter 12.

When fitting this type of model in GENMOD, β̂ = −0.163 and so

e β̂ = 0.85. ĉorr(Yi1,Yi2) = α̂ = 0.70.
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11.2 Conditional logistic regression

Let (Yi1,Yi2) be a pair of ordered responses from the i th subject,
i = 1, . . . , n. Consider

logit P(Yij = 1) = αi + βxj ,

where x1 = 0 and x2 = 1. Here, j = 1, 2 can be thought of as
time, with Yi1 denoting the first observation taken on subject i
and Yi2 being the second. Then

P(Yi1 = 1)

P(Yi1 = 0)
= eαi and

P(Yi2 = 1)

P(Yi2 = 0)
= eαi eβ.

And so

θ21 =
P(Yi2 = 1)/P(Yi2 = 0)

P(Yi1 = 1)/P(Yi1 = 0)
= eβ,

which does not depend on the subject i .
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Blocking on subject

The α1, . . . , αn are subject-specific effects that correlate Yi1

and Y12. Large αi indicates that both Yi1 = 1 and Yi2 = 1
are likely. Small αi indicates that both Yi1 = 0 and Yi2 = 0
are likely.

The model assumes that given the α1, . . . , αn, the responses
are independent. That is, Yi1 ⊥ Yi2|αi across all i = 1, . . . , n.

An estimate of eβ provides a conditional odds ratio. For a
given person, the odds of success are eβ more likely at time
j = 2 over time j = 1. It is conditional on the value of αi , i.e.
the person.

When α1 = α2 = · · · = αn then there is no person-to-person
variability in the response pair (Yi1,Yi2). The pairs (Yi1,Yi2)
are then iid from the population.
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11.2.3 Building conditional likelihood

The joint mass function for the n pairs
{(Y11,Y12), . . . , (Yn1,Yn2)} is given by

n∏
i=1

(
eαi

1 + eαi

)yi1
(

1

1 + eαi

)1−yi1 ( eαi+β

1 + eαi+β

)yi2 ( 1

1 + eαi+β

)1−yi2
.

The pairwise success totals Si = yi1 + yi2 ∈ {0, 1, 2} are sufficient
for αi . We can compute (not obvious, see book)

P(Yi10,= Yi2 = 0|Si = 0) = 1

P(Yi1 = 1,Yi2 = 1|Si = 2) = 1

P(Yi1 = 0,Yi2 = 1|Si = 1) =
eβ

1 + eβ

P(Yi1 = 1,Yi2 = 0|Si = 1) =
1

1 + eβ
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Building conditional likelihood

Conditional inference is based on conditioning on {S1, . . . ,Sn}. Let
n12 =

∑n
i=1 I{Yi1 = 1,Yi2 = 0}, n21 =

∑n
i=1 I{Yi1 = 0,Yi2 = 1},

and n∗ = n12 + n21 are the total number with Si = 1. The
conditional likelihood is∏

i :Si=1

(
eβ

1 + eβ

)yi1 ( 1

1 + eβ

)yi2

=
[eβ]n21

[1 + eβ]n∗
.

It pleasantly turns out (p. 421) that β̂ = log(n21/n12) and
σ̂(β̂) =

√
1/n21 + 1/n12.
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PMA data

We have β̂ = log(86/150) = −0.556 and σ̂(β̂) = 0.135. So the
odds of a randomly selected person saying the prime minister is
doing a good job after 6 months is estimated to be e−0.556 = 0.57
times their initial odds.

An alternative approach to conditioning on sufficient statistics is to
specify a full model and treat the αi as subject-specific random
effects. If we can think of subjects as being exchangeable, then a
common assumption is

α1, . . . , αn
iid∼ N(µ, σ2).

There are only three parameters (µ, σ, β) in the likelihood (after
averaging out the α1, . . . , αn). Studies have shown that estimating
β is robust to the distributional assumption placed on α1, . . . , αn.
More to come in Chapter 13.
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Digression: repeated measures increases precision

Recall the model

logitP(Yij = 1|αi ) = αi + I{j = 2}β, α1, . . . , αn
iid∼ (µ, σ2).

Let’s look at more familiar models from STAT 705. Say we want
to find how coffee affects myocardial bloodflow (ml/min/g). We
can find a sample of n individuals that have not had their morning
coffee and measure their bloodflow Y11, . . . ,Y1n1 . Then we can
find another independent sample of n individuals that had their
morning coffee and measure their bloodflow Y21, . . . ,Y2n2n.
Assume

Y11, . . . ,Y1n1
iid∼ N(µ, σ2y ) indep. Y21, . . . ,Y2n2n

iid∼ N(µ+ β, σ2y ).

Then
β̂ = Ȳ2• − Ȳ1• ∼ N(β, 2σ2y ).
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Digression: repeated measures increases precision

Now instead, let’s block on the individual and record their
bloodflow before morning coffee Y1i and after Y2i . Assume the
mixed effects model

Yij = αi+I{j = 2}β+eij , α1, . . . , αn
iid∼ N(0, σ2α) indep. eij

iid∼ N(0, σ2).

This implies

Yi =

[
Y1i

Y2i

]
iid∼ N2

([
µ

µ+ β

]
,

[
σ2 + σ2α σ2α
σ2α σ2 + σ2α

])
.

One can then show

β̂ = Ȳ2• − Ȳ1• ∼ N(β, 2σ2).

Here, σ2y = σ2 + σ2α. If σ2 << σ2y then precision is improved
drastically!
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Generalize to repeated measures within a cluster

We can think of taking two or more observations within a cluster
(an individual, matched covariates, etc.)

Let (Yi1,Yi2) be a pair of correlated binary observations from
within the same cluster. The data look like

Yi1 Yi2 xi1 xi2
Y11 Y12 x11 x12
Y21 Y22 x21 x22
.
.
.

.

.

.

.

.

.

.

.

.
Yn1 Yn2 xn1 xn2

The logit model specifies

logit P(Yij = 1) = αi + x′ijβ,

where i = 1, . . . , n is a pair number and j = 1, 2 denotes the
observation within a cluster.
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Conditional likelihood

As before, we condition on the sufficient statistics for β, namely
Si = Yi1 + Yi2. We have

P(Yi1 = Yi2 = 0|Si = 0) = 1

P(Yi1 = Yi2 = 1|Si = 2) = 1

P(Yi1 = 0,Yi2 = 1|Si = 1) = exp(x′i2β)/[exp(x′i1β) + exp(x′i2β)]

P(Yi1 = 1,Yi2 = 0|Si = 1) = exp(x′i1β)/[exp(x′i1β) + exp(x′i2β)].

The conditional likelihood is formed as before in the simpler case
and inference obtained in PROC LOGISTIC using the STRATA
statement.

Let’s examine the PMA data using thinking of (Yi1,Yi2) as
repeated measurements within an individual with corresponding
covariates xi1 = 0 and xi2 = 1 denoting time.
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SAS example for PMA data

data Data1;

do ID=1 to 794; approve=1; time=0; output; approve=1; time=1; output; end;

do ID=795 to 944; approve=1; time=0; output; approve=0; time=1; output; end;

do ID=945 to 1030; approve=0; time=0; output; approve=1; time=1; output; end;

do ID=1031 to 1600; approve=0; time=0; output; approve=0; time=1; output; end;

proc logistic data=Data1; strata ID; model approve(event=’1’)=time;

The LOGISTIC Procedure

Conditional Analysis

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 17.5752 1 <.0001

Score 17.3559 1 <.0001

Wald 16.9152 1 <.0001

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

time 1 -0.5563 0.1353 16.9152 <.0001

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

time 0.573 0.440 0.747
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11.2.5 Matched case-control studies

Let (Yi1 = 0,Yi2 = 1) be a pair of binary observations from two
different subjects matched on criteria that could affect the
outcome. The data look like

Control Yi1 Case Yi2 Case xi1 Control xi2
0 1 x11 x12
0 1 x21 x22
.
.
.

.

.

.

.

.

.

.

.

.
0 1 xn1 xn2

The logit model specifies

logit P(Yij = 1) = αi + x′ijβ,

where i = 1, . . . , n is a pair number and j = 1, 2 denotes case or
control.
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11.2.6 Conditional likelihood

By construction we have all Si = yi1 + yi2 = 1 and analogous to
our conditional approach for a pair of binary responses within an
individual, we have

P(Yi1 = 0,Yi2 = 1|Si = 1) =
ex
′
i2β

ex
′
i1β + ex

′
i2β
,

which does not depend on αi , and the conditional likelihood for β
is formed by taking the product over i = 1, . . . , n.

Even though the number of cases and the number of controls are
fixed at n, the logit link allows us to determine the effect of
covariates on the odds of being a case versus a control. That is the
odds of being a case instead of a control is increased by eβj when
xj is increased by unity.
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Heart attacks in Navajos

Example : n++ = 144 pairs of Navajo Indians, one having
myocardial infarction (MI) and the other free of heart disease, were
matched on age and gender yielding 288 Navajo total. It is of
interest to determine how the presence of diabetes affects the odds
of MI. Here’s the cross-classification of the pairs:

MI cases
MI controls Diabetes No diabetes
Diabetes 9 16

No diabetes 37 82

The data are conditionally analyzed using the STRATA
subcommand in PROC LOGISTIC.

data Data1;

do ID=1 to 9; case=1; diab=1; output; case=0; diab=1; output; end;

do ID=10 to 25; case=1; diab=0; output; case=0; diab=1; output; end;

do ID=26 to 62; case=1; diab=1; output; case=0; diab=0; output; end;

do ID=63 to 144; case=1; diab=0; output; case=0; diab=0; output; end;

proc logistic data=Data1;

strata ID;

model case(event=’1’)=diab;
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SAS output

The LOGISTIC Procedure

Conditional Analysis

Model Information

Response Variable case

Number of Response Levels 2

Number of Strata 144

Model binary logit

Probability modeled is case=1.

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

diab 1 0.8383 0.2992 7.8501 0.0051

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

diab 2.312 1.286 4.157

We estimate that the odds of MI increase by 2.3 when diabetes is
present, with a 95% CI of (1.3, 4.2). Diabetes significantly affects
the outcome MI.
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Endometrial cancer example

The following data is from Breslow and Day (1980) and is analyzed
in the SAS documentation. There’s 63 matched pairs, consisting
of one case of endometrial cancer (Outcome=1) and a control
without cancer (Outcome=0). The case and corresponding control
have the same ID, specified in the strata subcommand. Two
prognostic factors are included: Gall (= 1 for gall bladder disease)
and Hyper (= 1 for hypertension). The goal of the case-control
analysis is to determine the relative risk of endometrial cancer for
gall bladder disease, controlling for the effect of hypertension.

data d1;

do ID=1 to 63; do Outcome = 1 to 0 by -1; input Gall Hyper @@; output; end; end;

datalines;

0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 0 0 1 0 1 0 0 1 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 1 0 0 0 1 0 1 0 0

0 0 1 1 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0 1 1 0 0 0 0 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 1 0 0 0 1 0 1 0 1 0 1 0 1 0 0

0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 0 0

1 0 1 0 0 1 0 0 1 0 0 0

;

proc logistic data=d1; strata ID;

model outcome(event=’1’)= Gall Hyper; run;
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SAS output

The LOGISTIC Procedure

Conditional Analysis

Testing Global Null Hypothesis: BETA=0

Test Chi-Square DF Pr > ChiSq

Likelihood Ratio 4.5487 2 0.1029

Score 4.3620 2 0.1129

Wald 4.0060 2 0.1349

Analysis of Maximum Likelihood Estimates

Standard Wald

Parameter DF Estimate Error Chi-Square Pr > ChiSq

Gall 1 0.9704 0.5307 3.3432 0.0675

Hyper 1 0.3481 0.3770 0.8526 0.3558

Odds Ratio Estimates

Point 95% Wald

Effect Estimate Confidence Limits

Gall 2.639 0.933 7.468

Hyper 1.416 0.677 2.965

Adjusting for hypertension, the odds of developing endometrial
cancer are about 2.6 times as great (and almost significant!) for
those with gall bladder disease. How about the relative risk?
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Comments

Generalization: more than a pair of binary outcomes,
j = 1, 2, . . . , Ji . For example, repeated measures on subject i ,
or Ji rats from litter i .

Section 11.1 presented marginal inference,
δ = P(Y = 1)− P(X = 1). Answers how does probability
marginally change, averaged over everyone in population.

Section 11.2 deals with a conditional interpretation. θ21 was
how odds of success change over time j = 2 versus j = 1 for
any randomly sampled individual in the population.

In matched case-control study, we use the αi to induce
correlation in responses (Yi1,Yi2) within two like individuals.

For sparse data, one can include an additional EXACT
subcommand in PROC LOGISTIC to get exact tests and odds
ratio estimates, e.g. exact diab / estimate=both;
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Final comment on PMA data

The conditional odds ratio 0.57 is smaller than the population
averaged odds ratio 0.85. Is this reasonable? Yes. Many people
either like or dislike the PM. If one’s αi << 0 then this person
strongly dislikes the PM regardless of β. After 6 months, this
person perhaps dislikes the PM a bit less, but the probability in
either case is likely to be small.

Conditional inference holds for an individual with repeated
measures, or individuals in a matched (blocked!) set. Because the
conditional approach essentially blocks on like variables
(measurements within an individual; outcomes matched on gender,
age, cholesterol, etc.) it accounts for, and can reduce variability
associated with estimating the effect of interest. The marginal
inference holds for the population as a whole, averaged over the
blocking effects.

Which inference is preferred? It depends on the question!
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11.4 Testing for symmetry in a square I × I table

Consider an I × I table which cross-classifies (X ,Y ) on the same
outcomes.

Y = 1 Y = 2 · · · Y = I
X = 1 π11 π12 · · · π1I
X = 2 π21 π22 · · · π2I

...
...

...
. . .

...
X = I πI1 πI2 · · · πII

Marginal homogeneity happens when P(X = i) = P(Y = i)
(π+i = π+i ) for i = 1, . . . , I . This is important, for example, when
determining if classifiers (like X-ray readers) tend to classify in
roughly the same proportions. If not, perhaps one reader tends to
diagnose a disease more often than another reader.

Symmetry, a stronger assumption, implies marginal homogeneity.
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Definition of symmetric table

An I × I table is symmetric if P(X = i ,Y = j) = P(X = j ,Y = i)
(πij = πji ).

This simply reduces the number of parameters from I 2 (subject to
summing to one) to I (I + 1)/2 (subject to summing to one). For
example, in a 3× 3 table this forces

Y = 1 Y = 2 Y = 3
X = 1 π1 π2 π3
X = 2 π2 π4 π5
X = 3 π3 π5 π6

subject to π1 + π4 + π6 + 2π2 + 2π3 + 2π5 = 1.

The symmetric model is easily fit by specifying the cell probabilities
by hand in GENMOD. A test of the symmetric model versus the
saturated model is a test of H0 : πij = πji and can be carried out
by looking at the Deviance statistic (yielding a LRT).
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Recent example

The following table is from Yule (1900)

Wife
Husband Tall Medium Short
Tall 18 28 14
Medium 20 51 28
Short 12 25 9

Let (X ,Y ) be the heights of the (Husband, Wife). The table is
symmetric if P(X = i ,Y = j) = P(X = j ,Y = i). For example,
symmetry forces the same proportion of pairings of
(Husband,Wife)=(Tall,Short) and (Husband,Wife)=(Short,Tall).
This assumes the following structure

Wife
Husband Tall Medium Short
Tall π1 π2 π3
Medium π2 π4 π5
Short π3 π5 π6

subject to π1 + 2π2 + 2π3 + π4 + 2π5 + π6 = 1.
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SAS code

data hw;

input h w symm count @@;

datalines;

1 1 1 18 1 2 2 28 1 3 3 14

2 1 2 20 2 2 4 51 2 3 5 28

3 1 3 12 3 2 5 25 3 3 6 9

;

proc genmod; class symm;

model count=symm / link=log dist=poi;

The GENMOD output gives us
Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 3 1.6635 0.5545

A test of symmetry versus the saturated model gives a p-value of
P(χ2

3 > 1.66) = 0.65. We accept that the symmetric model fits.

Symmetry implies marginal homogeneity, P(X = i) = P(Y = i).
Husbands and wives are tall, medium, or short in the same
proportions.

Furthermore, for example, short wives and tall husbands occur with
the same probability as tall wives with short husbands.
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11.3 & 11.5 I × I marginal homogeneity & kappa statistic

Consider an I × I table where X and Y are cross-classified on the
same scale. Below are n = 118 slides classified for carcinoma of
the uterine cervix by two pathologists as (1) negative, (2) atypical
squamous hyperplasia, (3) carcinoma in situ, or (4) squamous or
invasive carcinoma.

Pathologist B
Pathologist A 1 2 3 4 Total

1 22 2 2 0 26
2 5 7 14 0 26
3 0 2 36 0 38
4 0 1 17 10 28

Total 27 12 69 10 118

If A and B were the same person then πij = 0 when i 6= j , i.e.
there’d only be nonzero diagonal elements. Nonzero off-diagonal
elements reflect disagreement and the further off the diagonal they
are, the more severe the disagreement.
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Marginal homogeneity

For example there are two slides classified by B as carcinoma in
situ (not metastasized beyond the original site) that A classified as
negative.

Perfect agreement occurs when π11 + π22 + π33 + π44 = 1. The
strength of agreement has to do with how close this is to one.

Marginal homogeneity occurs when the two classifiers agree on the
proportion of each classification in the population, but not
necessarily the classifications themselves. If marginal homogeneity
is not satisfied, then one classifier tends to classify a fixed category
more often than the other.
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Kappa statistic

Classifiers are independent if
P(X = i ,Y = j) = P(X = i)P(Y = j), and in this case agreement
for category i happens with probability
P(X = i ,Y = i) = P(X = i)P(Y = i) = πi+π+i . The kappa
statistic looks at the difference between the probability of
agreement

∑I
i=1 πii and agreement due to “chance”

∑I
i=1 πi+π+i ,

normalized by the largest this can be when
∑I

i=1 πii = 1:

κ =

∑I
i=1 πii − πi+π+i

1−
∑I

i=1 πi+π+i

,

and is estimated by simply replacing πij by π̂ij = nij/n++.
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SAS code & output

data table;

input A B count @@;

datalines;

1 1 22 1 2 2 1 3 2 1 4 0

2 1 5 2 2 7 2 3 14 2 4 0

3 1 0 3 2 2 3 3 36 3 4 0

4 1 0 4 2 1 4 3 17 4 4 10

;

proc freq order=data; weight count; tables A*B / plcorr agree;

The FREQ Procedure

Statistic Value ASE

------------------------------------------------------

Gamma 0.9332 0.0340

Polychoric Correlation 0.9029 0.0307

Test of Symmetry

------------------------

Statistic (S) 30.2857

DF 6

Pr > S <.0001

Kappa Statistics

Statistic Value ASE 95% Confidence Limits

------------------------------------------------------------

Simple Kappa 0.4930 0.0567 0.3818 0.6042

Weighted Kappa 0.6488 0.0477 0.5554 0.7422

Sample Size = 118
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Interpretation

There’s a test for symmetry! The statistic is the same as the
Pearson GOF test for the symmetric log-linear model, i.e. a
score test for testing H0 : πij = πji . What do we conclude?

How about γ̂ = 0.93 and ρ̂ = 0.90, both highly significant?
What does that tell us?

Finally, κ̂ = 0.49 with 95% CI about (0.4, 0.6). The difference
between observed agreement and that expected purely by
chance is between 0.4 and 0.6, moderately strong agreement.

The weighted kappa statistic is valid for an ordinal response
and weights differences in classifications according to how
“severe” the discrepancy. See p. 435.

κ is one number summarizing agreement. It may be much
more interesting to quantify where or why disagreement
occurs via models.
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Test of marginal homogeneity

Recall that McNemar’s test tests H0 : P(X = 1) = P(Y = 1) for a
2× 2 table. This is output from PROC FREQ in SAS using
AGREE.
Often, when comparing raters, we have more than 2 categories. A
general test of marginal homogeneity tests
H0 : P(X = i) = P(Y = i) for i = 1, . . . , I . mh is a small program
written by John Uebersax to perform overall tests of marginal
homogeneity, among other things.

MH Program: Marginal Homogeneity Tests for N x N Tables

Version 1.2 - John Uebersax

2008-04-24 2:19 PM

***INPUT***

Diagnoses of Carcinoma (Agresi Table 10.8)

4 categories

Path A is row variable

Path B is column variable

ordered categories

22 2 2 0

5 7 14 0

0 2 36 0

0 1 17 10

Total number of cases: 118
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Output

***BASIC TESTS***

Four-fold tables tested

22 4 5 87

7 19 5 87

36 2 33 47

10 18 0 90

McNemar Tests for Each Category

---------------------------------------------------------------------

Proportion

Frequency (Base Rate)

Level ---------------- ---------------- Chi-

(k) Path A Path B Path A Path B squared(a) p

---------------------------------------------------------------------

1 26 27 0.220 0.229 exact test 1.0000

2 26 12 0.220 0.102 8.167 0.0043*

3 38 69 0.322 0.585 27.457 0.0000*

4 28 10 0.237 0.085 18.000 0.0000*

---------------------------------------------------------------------

(a) or exact test

* p < Bonferroni-adjusted significance criterion of 0.017.

Tests of Overall Marginal Homogeneity

------------------------------------------------------------

Bhapkar chi-squared = 38.528 df = 3 p = 0.0000

Stuart-Maxwell chi-squared = 29.045 df = 3 p = 0.0000

Bowker Symmetry Test

----------------------------------------------

Chi-squared = 30.286 df = 6 p = 0.0000

37 / 42



Output

***TESTS FOR ORDERED-CATEGORY DATA***

McNemar Test of Overall Bias

or Direction of Change

--------------------------------------------

Cases where Path A level is higher: 25

Cases where Path B level is higher: 18

Chi-squared = 1.140 df = 1 p = 0.2858

Four-fold tables tested (for thresholds tests)

22 4 5 87

36 16 3 63

90 0 18 10

Tests of Equal Category Thresholds

---------------------------------------------------------------------

Proportion

of cases

below

level k Threshold(a)

Level ---------------- ---------------- Chi-

(k) Path A Path B Path A Path B squared(b) p

---------------------------------------------------------------------

2 0.220 0.229 -0.771 -0.743 exact test 1.0000

3 0.441 0.331 -0.149 -0.439 8.895 0.0029*

4 0.763 0.915 0.715 1.374 18.000 0.0000*

---------------------------------------------------------------------

(a) for probit model

(b) or exact test

* p < Bonferroni-adjusted significance criterion of 0.017.
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Output

***GRAPHIC OUTPUT***

Marginal Distributions of Categories

for Path A (**) and Path B (==)

0.585 + ==

| ==

| ==

| ==

| ** ==

| ** ==

| ** == ** ** == **

| ** == ** ** == **

| ** == ** == ** == **

| ** == ** == ** == ** ==

0 +----+-------+-------+-------+----

1 2 3 4

Notes: x-axis is category number or level.

y-axis is proportion of cases.

Proportion of cases below each level

1 2 3 4

|------------|------------|-------------------|-------------- Path A

|-------------|-----|----------------------------------|----- Path B

1 2 3 4

+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+ Scale

0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.
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Comments

The Bhapkar test (p. 424, 11.3.1; more powerful than
Stuart-Maxwell) for marginal homogeneity is highly significant
with p = 0.0000. We reject marginal homogeneity. The
graphical output indicates that both pathologists tend to
classify ‘negative’ in roughly the same proportion, but that B
classifies ‘carcinoma in situ’ more often than A, whereas A
classifies classifies ‘atypical squamous hyperplasia’ and
‘squamous or invasive carcinoma’ more often than B.

There is also an individual test for each category.
H0 : P(X = i) = P(Y = i) is rejected for i = 2, 3, 4 but not
i = 1.

40 / 42



Comments

We are interested in whether one rater tends to classify slides
‘higher’ or ‘lower’ than the other. Off-diagonal elements above
the diagonal are when B classifies higher than A; elements
below the diagonal are when B classifies lower than A. The
McNemar test of overall bias is not significant, indicating that
one rater does not tend to rate higher or lower than the other.

The test for symmetry has the same test statistic and p-value
as from SAS.

The program is easy to run on a Windows-based PC and free.
There is a users guide and sample input and output files. Web
location: http://www.john-uebersax.com/stat/mh.htm.
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Stuart-Maxwell test in R

> library(coin)

Loading required package: survival

Loading required package: splines

> rate=c("N","ASH","CIS","SIC")

> ratings=as.table(matrix(c(22,5,0,0,2,7,2,1,2,14,36,17,0,0,0,10),nrow=4,

+ dimnames=list(PathA=rate,PathB=rate)))

> ratings

PathB

PathA N ASH CIS SIC

N 22 2 2 0

ASH 5 7 14 0

CIS 0 2 36 0

SIC 0 1 17 10

> mh_test(ratings)

Asymptotic Marginal-Homogeneity Test

data: response by

groups (PathA, PathB)

stratified by block

chi-squared = 29.0447, df = 3, p-value = 2.192e-06
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