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3.3.1 Odds ratio, SE, & CI

The sample odds ratio θ̂ = n11n22/n12n21 can be zero, undefined,
or ∞ if one or more of {n11, n22, n12, n21} are zero.

An alternative is to add 1/2 observation to each cell
θ̃ = (n11 + 0.5)(n22 + 0.5)/(n12 + 0.5)(n21 + 0.5). This also
corresponds to a particular Bayesian estimate.

Both θ̂ and θ̃ have skewed sampling distributions with small
n = n++. The sampling distribution of log θ̂ is relatively symmetric
and therefore more amenable to a Gaussian approximation. An
approximate (1− α)× 100% CI for log θ is given by

log θ̂ ± zα
2

√
1

n11
+

1

n12
+

1

n21
+

1

n22
.

A CI for θ is obtained by exponentiating the interval endpoints.
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Alternative CIs

When θ̂ = 0 this doesn’t work (log 0“=”−∞).

Can use nij + 0.5 in place of nij in MLE estimate and standard
error yielding

log θ̃ ± zα
2

√
1

n11 + 0.5
+

1

n12 + 0.5
+

1

n21 + 0.5
+

1

n22 + 0.5
.

Exact approach involves testing H0 : θ = t for various values
of t subject to rows or columns fixed and simulating a
p-value. Those values of t that give p-values greater than
0.05 define the 95% CI. This is related to Fisher’s exact test,
sketched out in Sections 3.5 and 16.6.4.
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3.1.4 Aspirin and heart attacks

The following 2× 2 contingency table is from a report by the
Physicians’ Health Study Research Group on n = 22, 071
physicians that took either a placebo or aspirin every other day.

Fatal attack Nonfatal or no attack
Placebo 18 11,016
Aspirin 5 11,032

Here θ̂ = 18×11032
5×11016 = 3.605 and log θ̂ = log 3.605 = 1.282, and

se{log(θ̂)} =
√

1
18 + 1

11016 + 1
5 + 1

11032 = 0.506.

A 95% CI for θ is then exp{1.282± 1.96(0.506)} =
(e1.282−1.96(0.506), e1.282+1.96(0.506)) = (1.34, 9.72).
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3.1.3 Difference in proportions & relative risk

Assume (1) multinomial sampling or (2) product binomial
sampling. The row totals ni+ are fixed (e.g. prospective study or
clinical trial) Let π1 = P(Y = 1|X = 1) and
π2 = P(Y = 1|X = 2).

The sample proportion for each level of X is the MLE
π̂1 = n11/n1+, π̂2 = n21/n2+. Using either large sample results or
the CLT we have

π̂1
•∼ N

(
π1,

π1(1− π1)

n1+

)
⊥ π̂2

•∼ N

(
π2,

π2(1− π2)

n2+

)
.

Since the difference of two independent normals is also normal, we
have

π̂1 − π̂2
•∼ N

(
π1 − π2,

π1(1− π1)

n1+
+
π2(1− π2)

n2+

)
.
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se(π̂1 − π̂2) and CI

Plugging in MLEs for unknowns, we estimate the standard
deviation of the difference in sample proportions by the standard
error

se(π̂1 − π̂2) =

√
π̂1(1− π̂1)

n1+
+
π̂2(1− π̂2)

n2+
.

A Wald CI for the unknown difference has endpoints

π̂1 − π̂2 ± zα
2
se(π̂1 − π̂2).

For the aspirin and heart attack data,
π̂1 = 18/(18 + 11016) = 0.00163 and
π̂2 = 5/(5 + 11032) = 00045.

The estimated difference is π̂1 − π̂2 = 0.00163− 00045 = 0.0012
and se(π̂1 − π̂2) = 0.00043 so a 95% CI for π1 − π2 is
0.0012± 1.96(0.00043) = (0.0003, 0.0020).
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Relative risk

Like the odds ratio, the relative risk π1/π2 > 0 and the sample
relative risk r = π̂1/π̂2 tends to have a skewed sampling
distribution in small samples. Large sample normality implies

log r = log π̂1/π̂2
•∼ N(log π1/π2, σ

2(log r)).

where

σ(log r) =

√
1− π1

π1n1+
+

1− π2

π2n2+
.

Plugging in π̂i for πi gives the standard error and CIs are obtained
as usual for log π1/π2, then exponentiated to get the CI for π1/π2.

For the aspirin and heart attack data, the estimated relative risk is
π̂1/π̂2 = 0.00163/0.00045 = 3.60 and se{log(π̂1/π̂2)} = 0.505, so
a 95% CI for π1/π2 is exp{log 3.60± 1.96(0.505)} =
(e log 3.60−1.96(0.505), e log 3.60+1.96(0.505)) = (1.34, 9.70).
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3.1.2 Seat-belts and traffic deaths

Car accident fatality records for children < 18, Florida 2008.

Injury outcome
Seat belt use Fatal Non-fatal Total

No 54 10,325 10,379
Yes 25 51,790 51,815

θ̂ = 54(51790)/[10325(25)] = 10.83.

se(log θ̂) = 0.242.

95% CI for θ̂ is (exp{log(10.83)−
1.96(0.242)}, exp{log(10.83) + 1.96(0.242)}) = (6.74, 17.42).

We reject that H0 : θ = 1 (at level α = 0.05). We reject that
seatbelt use is not related to mortality.
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SAS code

norow and nocol remove row and column percentages from
the table (not shown); these are conditional probabilities.

measures gives estimates and CIs for odds ratio and relative
risk.

riskdiff gives estimate and CI for π1 − π2.

exact plus or or riskdiff gives exact p-values for
hypothesis tests of no difference and/or CIs.

data table;

input use$ outcome$ count @@;

datalines;

no fatal 54 no nonfatal 10325

yes fatal 25 yes nonfatal 51790

;

proc freq data=table order=data; weight count;

tables use*outcome / measures riskdiff norow nocol;

* exact or riskdiff; * exact test for H0: pi1=pi2 takes forever...;

run;
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SAS output: inference for π1 − π2, π1/π2, and θ

Statistics for Table of use by outcome

Column 1 Risk Estimates

(Asymptotic) 95% (Exact) 95%

Risk ASE Confidence Limits Confidence Limits

-----------------------------------------------------------------------------

Row 1 0.0052 0.0007 0.0038 0.0066 0.0039 0.0068

Row 2 0.0005 0.0001 0.0003 0.0007 0.0003 0.0007

Total 0.0013 0.0001 0.0010 0.0016 0.0010 0.0016

Difference 0.0047 0.0007 0.0033 0.0061

Difference is (Row 1 - Row 2)

Column 2 Risk Estimates

(Asymptotic) 95% (Exact) 95%

Risk ASE Confidence Limits Confidence Limits

-----------------------------------------------------------------------------

Row 1 0.9948 0.0007 0.9934 0.9962 0.9932 0.9961

Row 2 0.9995 0.0001 0.9993 0.9997 0.9993 0.9997

Total 0.9987 0.0001 0.9984 0.9990 0.9984 0.9990

Difference -0.0047 0.0007 -0.0061 -0.0033

Difference is (Row 1 - Row 2)

Estimates of the Relative Risk (Row1/Row2)

Type of Study Value 95% Confidence Limits

-----------------------------------------------------------------

Case-Control (Odds Ratio) 10.8345 6.7405 17.4150

Cohort (Col1 Risk) 10.7834 6.7150 17.3165

Cohort (Col2 Risk) 0.9953 0.9939 0.9967
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Three CIs give three equivalent tests...

Note that (54/10379)/(25/51815) = 10.78 and
(10325/10379)/(51790/51815) = 0.995.

Col1 risk is relative risk of dying and Col2 risk is relative risk
of living.

We can test all of H0 : θ = 1, H0 : π1/π2 = 1, and
H0 : π1 − π2 = 0. All of these null hypotheses are equivalent to
H0 : π1 = π2, i.e. living is independent of wearing a seat belt.

A final method for testing independence is coming up in Section
3.2 that generalizes to larger I × J tables.
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Delta method

It’s probably worth reading or at least skimming 3.1.5, 3.1.6, 3.1.7
(pp. 72-75).

Idea is straightforward (see Fig. 3.1) & wildly useful.

Delta method is how we obtain the standard errors for log θ̂ and
log(π̂1/π̂2) on previous slides.
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3.2 Testing independence in I × J tables

Assume one mult(n,π) distribution for the whole table. Let
πij = P(X = i ,Y = j); we must have π++ = 1.

If the table is 2× 2, we can just look at H0 : θ = 1.

In general, independence holds if H0 : πij = πi+π+j , or
equivalently, µij = nπi+π+j .

That is, independence implies a constraint; the parameters
π1+, . . . , πI+ and π+1, . . . , π+J define all probabilities in the I × J
table under the constraint.
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Pearson statistic

Pearson’s statistic is

X 2 =
I∑

i=1

J∑
j=1

(nij − µ̂ij)
2

µ̂ij
,

where µ̂ij = n(ni+/n)(n+j/n), the MLE under H0.

There are I − 1 free {πi+} and J − 1 free {π+j}. Then
IJ − 1− [(I − 1) + (J − 1)] = (I − 1)(J − 1).

When H0 is true, X 2 •∼ χ2
(I−1)(J−1).

This is an example of the approach in 1.5.5.
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Likelihood ratio statistic

The LRT statistic boils down to

G 2 = 2
I∑

i=1

J∑
j=1

nij log(nij/µ̂ij),

and is also G 2 •∼ χ2
(I−1)(J−1) when H0 is true.

X 2 − G 2 p→ 0.

The approximation is better for X 2 than G 2 in smaller
samples.

The approximation can be okay when some µ̂ij = ni+n+j/n
are as small as 1, but most are at least 5.

When in doubt, use small sample methods.

Everything holds for product multinomial sampling too (fixed
marginals for one variable)!
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SAS code: tests for independence, seat-belt data

chisq gives X 2 and G 2 tests for independence (coming up in
these slides).

expected gives expected cell counts under independence.

exact plus chisq gives exact p-values for testing
independence using X 2 and G 2.

proc freq data=table order=data; weight count;

tables use*outcome / chisq norow nocol expected;

exact chisq;

run;

16 / 30



SAS output: table and asymptotic tests for independence

The FREQ Procedure

Table of use by outcome

use outcome

Frequency|

Expected |

Percent |fatal |nonfatal| Total

---------+--------+--------+

no | 54 | 10325 | 10379

| 13.184 | 10366 |

| 0.09 | 16.60 | 16.69

---------+--------+--------+

yes | 25 | 51790 | 51815

| 65.816 | 51749 |

| 0.04 | 83.27 | 83.31

---------+--------+--------+

Total 79 62115 62194

0.13 99.87 100.00

Statistics for Table of use by outcome

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 1 151.8729 <.0001

Likelihood Ratio Chi-Square 1 104.0746 <.0001
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SAS output: exact tests for independence

Pearson Chi-Square Test

----------------------------------

Chi-Square 151.8729

DF 1

Asymptotic Pr > ChiSq <.0001

Exact Pr >= ChiSq 2.663E-24

Likelihood Ratio Chi-Square Test

----------------------------------

Chi-Square 104.0746

DF 1

Asymptotic Pr > ChiSq <.0001

Exact Pr >= ChiSq 2.663E-24

These test the null H0 that wearing a seat belt is independent of
living. What do we conclude?

Obtaining p-values for exact tests are discussed in detail in Section
16.5.
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3.2.2 Belief in God, a 3× 6 table

Belief in God
Highest Don’t No way to Some higher Believe Believe Know God
degree believe find out power sometimes but doubts exists
Less than 9 8 27 8 47 236
high school
High school or 23 39 88 49 179 706
junior college
Bachelor or 28 48 89 19 104 293
graduate

General Social Survey data cross-classifies opinion on whether God
exists by highest education degree obtained.
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SAS code, belief in God data

data table;

input degree$ belief$ count @@;

datalines;

1 1 9 1 2 8 1 3 27 1 4 8 1 5 47 1 6 236

2 1 23 2 2 39 2 3 88 2 4 49 2 5 179 2 6 706

3 1 28 3 2 48 3 3 89 3 4 19 3 5 104 3 6 293

;

proc format; value $dc

’1’ = ’less than high school’

’2’ = ’high school or junior college’

’3’ = ’bachelors or graduate’;

value $bc

’1’ = ’dont believe’

’2’ = ’no way to find out’

’3’ = ’some higher power’

’4’ = ’believe sometimes’

’5’ = ’believe but doubts’

’6’ = ’know God exists’;

run;

proc freq data=table order=data; weight count;

format degree $dc. belief $bc.;

tables degree*belief / chisq expected norow nocol;

run;
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Annotated output from proc freq

degree belief

Frequency |

Expected |

Percent |dont bel|no way t|some hig|believe |believe |know God| Total

|ieve |o find o|her powe|sometime|but doub| exists |

| |ut |r |s |ts | |

-----------------+--------+--------+--------+--------+--------+--------+

less than high s | 9 | 8 | 27 | 8 | 47 | 236 | 335

chool | 10.05 | 15.913 | 34.17 | 12.73 | 55.275 | 206.86 |

| 0.45 | 0.40 | 1.35 | 0.40 | 2.35 | 11.80 | 16.75

-----------------+--------+--------+--------+--------+--------+--------+

high school or j | 23 | 39 | 88 | 49 | 179 | 706 | 1084

unior college | 32.52 | 51.49 | 110.57 | 41.192 | 178.86 | 669.37 |

| 1.15 | 1.95 | 4.40 | 2.45 | 8.95 | 35.30 | 54.20

-----------------+--------+--------+--------+--------+--------+--------+

bachelors or gra | 28 | 48 | 89 | 19 | 104 | 293 | 581

duate | 17.43 | 27.598 | 59.262 | 22.078 | 95.865 | 358.77 |

| 1.40 | 2.40 | 4.45 | 0.95 | 5.20 | 14.65 | 29.05

-----------------+--------+--------+--------+--------+--------+--------+

Total 60 95 204 76 330 1235 2000

3.00 4.75 10.20 3.80 16.50 61.75 100.00

Statistics for Table of degree by belief

Statistic DF Value Prob

------------------------------------------------------

Chi-Square 10 76.1483 <.0001

Likelihood Ratio Chi-Square 10 73.1879 <.0001

Statistic Value ASE

------------------------------------------------------

Gamma -0.2483 0.0334
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3.3 Following up chi-squared tests for independence

Rejecting H0 : πij = πi+π+j does not tell us about the nature of
the association.

3.3.1 Pearson and standardized residuals
The Pearson residual is

eij =
nij − µ̂ij√

µ̂ij

,

where, as before, µ̂ij = ni+n+j/n is the estimate under
H0 : X ⊥ Y .

When H0 : X ⊥ Y is true, under multinomial sampling
eij

•∼ N(0, v), where v < 1, in large samples.

Note that
∑I

i=1

∑J
j=1 e2

ij = X 2.
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Standardized Pearson residuals

Standardized Pearson residuals are Pearson residuals divided by
their standard error under multinomial sampling (see Chapter 14).

rij =
nij − µ̂ij√

µ̂ij(1− pi+)(1− p+j)
,

where pij = nij/n are MLEs under the full (non-independence)
model. Values of |rij | > 3 happen very rarely when H0 : X ⊥ Y is
true and |rij | > 2 happen only roughly 5% of the time.

Pearson residuals and their standardized version tell us which cell
counts are much larger or smaller than what we would expect
under H0 : X ⊥ Y .
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Residuals, belief in God data

Annotated output from proc genmod:

proc genmod order=data; class degree belief;

model count = degree belief / dist=poi link=log residuals;

run;

The GENMOD Procedure

Std Std

Raw Pearson Deviance Deviance Pearson Likelihood

Observation Residual Residual Residual Residual Residual Residual

1 -1.050027 -0.33122 -0.337255 -0.375301 -0.368586 -0.374018

2 -7.912722 -1.983598 -2.196043 -2.466133 -2.227559 -2.41867

3 -7.17002 -1.226585 -1.273736 -1.473157 -1.418624 -1.459585

4 -4.730002 -1.325706 -1.423967 -1.591184 -1.481383 -1.569931

5 -8.275002 -1.113022 -1.142684 -1.370537 -1.33496 -1.35979

6 29.137492 2.0258686 1.9809013 3.5103847 3.5900719 3.5648903

7 -9.520085 -1.669418 -1.762793 -2.644739 -2.504646 -2.567827

8 -12.49071 -1.740695 -1.819318 -2.754505 -2.635467 -2.688045

9 -22.56805 -2.146245 -2.226274 -3.471424 -3.346635 -3.398513

10 7.8079994 1.2165594 1.1808771 1.7790347 1.8327913 1.8093032

11 0.1400133 0.0104692 0.0104678 0.016927 0.0169292 0.0169284

12 36.630048 1.4158081 1.403181 3.3524702 3.3826387 3.3773731

13 10.56995 2.5317662 2.3247777 2.8023308 3.0518386 2.8824417

14 20.402111 3.883624 3.51114 4.2710987 4.724204 4.4230839

15 29.737956 3.862983 3.5931704 4.5015643 4.8395885 4.6270782

16 -3.078006 -0.655073 -0.671253 -0.812499 -0.792914 -0.806333

17 8.1349809 0.8308573 0.8195034 1.0647099 1.0794611 1.0707466

18 -65.76757 -3.472204 -3.587324 -6.88618 -6.665198 -6.725887
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Direction and ‘significance’ of standardized Pearson
residuals rij

|rij | > 3 indicate severe departures from independence; these are in
boxes below.

− − − − − +

− − − + + +

+ + + − + −

Which cells are over-represented relative to independence? Which
are under-represented? In general, what can one say about belief in
God and education? Does this correspond with the γ statistic?

Also see mosaic plot on p. 82.
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3.3.3 Partitioning Chi-squared

Recall from ANOVA the partitioning of SS Treatments via
orthogonal contrasts. We can do something similar with
contingency tables.
A χ2

ν random variable X 2 can be written

X 2 = Z 2
1 + Z 2

2 + · · ·+ Z 2
ν ,

where Z1, . . . ,Zν are iid N(0, 1) & so Z 2
1 , . . . ,Z

2
ν are iid χ2

1.
Partitioning works by testing independence in a series of
(collapsed) sub-tables in a particular way. Say t tests are
performed. The i th test results in G 2

i with associated degrees of
freedom dfi = νi . Then

G 2
1 + G 2

2 + · · ·+ G 2
t = G 2,

the LRT statistic from testing independence in the overall I × J
table. Also, ν1 + ν2 + · · ·+ νt = (I − 1)(J − 1), the degrees of
freedom for the overall test.
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One approach is to look at a series of ν = (I − 1)(J − 1) 2× 2
tables (pp. 81-83) of the form:∑

a<i

∑
b<j nab

∑
a<i naj∑

b<j nij nij

for i = 2, . . . , I and j = 2, . . . , J. Each sub-table will have df
νij = 1 and

∑I
i=2

∑J
j=2 G 2

ij = G 2 from the overall LRT.

Example: Origin of schizophrenia (p. 83)

Schizophrenia origin
Psych school Biogenic Environmental Combination
Eclectic 90 12 78
Medical 13 1 6
Psychoanalytic 19 13 50

For the full table, testing H0 : X ⊥ Y yields G 2 = 23.036 on 4 df ,
so p < 0.001.
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When we consider (Lancaster) partitioning, we get 4 tables

Bio Env θ̂11 = 0.58
Ecl 90 12 G2

11 = 0.294
Med 13 1 p = 0.59

Bio+Env Com θ̂12 = 0.56
Ecl 102 78 G2

12 = 1.359
Med 14 6 p = 0.24

Bio Env θ̂21 = 5.4
Ecl+Med 103 13 G2

21 = 12.953
Psy 19 13 p = 0.0003

Bio+Env Com θ̂22 = 2.2
Ecl+Med 116 84 G2

22 = 8.430
Psy 32 50 p = 0.004

Note that: 0.294 + 1.359 + 12.953 + 8.430 = 23.036 as required.
Also: 1 + 1 + 1 + 1 = 4.
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Analysis...

The last two tables contribute more than 90% of the G 2 statistic.

The first two tables suggest that eclectic and medical schools
of thought tend to classify the origin of schizophrenia in
roughly the same proportions.

The last two tables suggest a difference in how the
psychoanalytic school classifies the origin relative to eclectic
and medical schools.

The odds of a member of the psychoanalytical school
ascribing the origin to be a combination (versus biogenic or
environmental) is about 2.2 times greater than medical or
eclectic. Within the last two origins, the odds of a member of
the psychoanalytical school ascribing the origin to be a
environmental is about 5.4 times greater than medical or
eclectic.
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Comments

Lancaster partitioning looks at a lot of tables. There might be
natural, simpler groupings of X and Y levels to look at. See
your text for advice and discussion on partitioning.

Partitioning G 2 and standardized Pearson residuals are two
tools to help find where association occurs in a table once
H0 : X ⊥ Y is rejected.

There are better methods for ordinal data, the subject of the
next lecture.

There are also exact tests of H0 : X ⊥ Y which we’ll briefly
discuss next time as well. I included them on slide 18 to show
how SAS returns the results.
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