Sections 3.1, 3.2, 3.3

Timothy Hanson

Department of Statistics, University of South Carolina

Stat 770: Categorical Data Analysis

The sample odds ratio $\hat{\theta} = n_{11}n_{22}/n_{12}n_{21}$ can be zero, undefined, or ∞ if one or more of $\{n_{11}, n_{22}, n_{12}, n_{21}\}$ are zero.

An alternative is to add 1/2 observation to each cell $\tilde{\theta} = (n_{11} + 0.5)(n_{22} + 0.5)/(n_{12} + 0.5)(n_{21} + 0.5)$. This also corresponds to a particular Bayesian estimate.

Both $\hat{\theta}$ and $\tilde{\theta}$ have skewed sampling distributions with small $n = n_{++}$. The sampling distribution of $\log \hat{\theta}$ is relatively symmetric and therefore more amenable to a Gaussian approximation. An approximate $(1 - \alpha) \times 100\%$ CI for $\log \theta$ is given by

$$\log \hat{\theta} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n_{11}} + \frac{1}{n_{12}} + \frac{1}{n_{21}} + \frac{1}{n_{22}}}$$

A CI for θ is obtained by exponentiating the interval endpoints.

Alternative Cls

- When $\hat{\theta} = 0$ this doesn't work $(\log 0 \ =" -\infty)$.
- Can use n_{ij} + 0.5 in place of n_{ij} in MLE estimate and standard error yielding

$$\log \tilde{\theta} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1}{n_{11} + 0.5} + \frac{1}{n_{12} + 0.5} + \frac{1}{n_{21} + 0.5} + \frac{1}{n_{22} + 0.5}}.$$

Exact approach involves testing H₀: θ = t for various values of t subject to rows or columns fixed and simulating a p-value. Those values of t that give p-values greater than 0.05 define the 95% CI. This is related to Fisher's exact test, sketched out in Sections 3.5 and 16.6.4.

The following 2×2 contingency table is from a report by the Physicians' Health Study Research Group on n = 22,071 physicians that took either a placebo or aspirin every other day.

	Fatal attack	Nonfatal or no attack
Placebo	18	11,016
Aspirin	5	11,032

Here $\hat{\theta} = \frac{18 \times 11032}{5 \times 11016} = 3.605$ and $\log \hat{\theta} = \log 3.605 = 1.282$, and $\operatorname{se}\{\log(\hat{\theta})\} = \sqrt{\frac{1}{18} + \frac{1}{11016} + \frac{1}{5} + \frac{1}{11032}} = 0.506$. A 95% CI for θ is then $\exp\{1.282 \pm 1.96(0.506)\} = (e^{1.282 - 1.96(0.506)}, e^{1.282 + 1.96(0.506)}) = (1.34, 9.72)$.

3.1.3 Difference in proportions & relative risk

Assume (1) multinomial sampling or (2) product binomial sampling. The row totals n_{i+} are fixed (e.g. prospective study or clinical trial) Let $\pi_1 = P(Y = 1 | X = 1)$ and $\pi_2 = P(Y = 1 | X = 2)$.

The sample proportion for each level of X is the MLE $\hat{\pi}_1 = n_{11}/n_{1+}$, $\hat{\pi}_2 = n_{21}/n_{2+}$. Using either large sample results or the CLT we have

$$\hat{\pi}_1 \stackrel{\bullet}{\sim} N\left(\pi_1, \frac{\pi_1(1-\pi_1)}{n_{1+}}\right) \perp \hat{\pi}_2 \stackrel{\bullet}{\sim} N\left(\pi_2, \frac{\pi_2(1-\pi_2)}{n_{2+}}\right).$$

Since the difference of two independent normals is also normal, we have

$$\hat{\pi}_1 - \hat{\pi}_2 \stackrel{\bullet}{\sim} N\left(\pi_1 - \pi_2, \frac{\pi_1(1 - \pi_1)}{n_{1+}} + \frac{\pi_2(1 - \pi_2)}{n_{2+}}\right)$$

$se(\hat{\pi}_1 - \hat{\pi}_2)$ and Cl

Plugging in MLEs for unknowns, we estimate the standard deviation of the difference in sample proportions by the standard error

$$se(\hat{\pi}_1 - \hat{\pi}_2) = \sqrt{rac{\hat{\pi}_1(1 - \hat{\pi}_1)}{n_{1+}}} + rac{\hat{\pi}_2(1 - \hat{\pi}_2)}{n_{2+}}.$$

A Wald CI for the unknown difference has endpoints

$$\hat{\pi}_1 - \hat{\pi}_2 \pm z_{\frac{\alpha}{2}} se(\hat{\pi}_1 - \hat{\pi}_2).$$

For the aspirin and heart attack data, $\hat{\pi}_1 = 18/(18 + 11016) = 0.00163$ and $\hat{\pi}_2 = 5/(5 + 11032) = 00045$.

The estimated difference is $\hat{\pi}_1 - \hat{\pi}_2 = 0.00163 - 00045 = 0.0012$ and $se(\hat{\pi}_1 - \hat{\pi}_2) = 0.00043$ so a 95% CI for $\pi_1 - \pi_2$ is $0.0012 \pm 1.96(0.00043) = (0.0003, 0.0020).$

Relative risk

Like the odds ratio, the relative risk $\pi_1/\pi_2 > 0$ and the sample relative risk $r = \hat{\pi}_1/\hat{\pi}_2$ tends to have a skewed sampling distribution in small samples. Large sample normality implies

$$\log r = \log \hat{\pi}_1 / \hat{\pi}_2 \stackrel{\bullet}{\sim} N(\log \pi_1 / \pi_2, \sigma^2(\log r)).$$

where

$$\sigma(\log r) = \sqrt{\frac{1-\pi_1}{\pi_1 n_{1+}} + \frac{1-\pi_2}{\pi_2 n_{2+}}}.$$

Plugging in $\hat{\pi}_i$ for π_i gives the standard error and CIs are obtained as usual for log π_1/π_2 , then exponentiated to get the CI for π_1/π_2 .

For the aspirin and heart attack data, the estimated relative risk is $\hat{\pi}_1/\hat{\pi}_2 = 0.00163/0.00045 = 3.60$ and $se\{\log(\hat{\pi}_1/\hat{\pi}_2)\} = 0.505$, so a 95% Cl for π_1/π_2 is exp $\{\log 3.60 \pm 1.96(0.505)\} = (e^{\log 3.60 - 1.96(0.505)}, e^{\log 3.60 + 1.96(0.505)}) = (1.34, 9.70).$

Car accident fatality records for children < 18, Florida 2008.

Injury outcome						
Seat belt use	Fatal	Non-fatal	Total			
No	54	10,325	10,379			
Yes	25	51,790	51,815			

- $\hat{\theta} = 54(51790)/[10325(25)] = 10.83.$
- $se(\log \hat{\theta}) = 0.242.$
- 95% CI for $\hat{\theta}$ is $(\exp\{\log(10.83) 1.96(0.242)\}, \exp\{\log(10.83) + 1.96(0.242)\}) = (6.74, 17.42).$
- We reject that $H_0: \theta = 1$ (at level $\alpha = 0.05$). We reject that seatbelt use is not related to mortality.

SAS code

- norow and nocol remove row and column percentages from the table (not shown); these are conditional probabilities.
- measures gives estimates and CIs for odds ratio and relative risk.
- riskdiff gives estimate and CI for $\pi_1 \pi_2$.
- exact plus or or riskdiff gives exact p-values for hypothesis tests of no difference and/or Cls.

```
data table;
input use$ outcome$ count @@;
datalines;
no fatal 54 no nonfatal 10325
yes fatal 25 yes nonfatal 51790
;
proc freq data=table order=data; weight count;
tables use*outcome / measures riskdiff norow nocol;
* exact or riskdiff; * exact test for H0: pi1=pi2 takes forever...;
run;
```

SAS output: inference for $\pi_1 - \pi_2$, π_1/π_2 , and θ

Statistics for Table of use by outcome

Column 1 Risk Estimates

	Risk	ASE	(Asympto Confiden	tic) 95% ce Limits	(Exac Confiden	t) 95% ce Limits
Row 1	0.0052	0.0007	0.0038	0.0066	0.0039	0.0068
Row 2	0.0005	0.0001	0.0003	0.0007	0.0003	0.0007
Total	0.0013	0.0001	0.0010	0.0016	0.0010	0.0016
Difference	0.0047	0.0007	0.0033	0.0061		

Difference is (Row 1 - Row 2)

Column 2 Risk Estimates

	Risk	ASE	(Asympto Confiden	tic) 95% ce Limits	(Exac Confiden	t) 95% ce Limits
Row 1	0.9948	0.0007	0.9934	0.9962	0.9932	0.9961
Row 2	0.9995	0.0001	0.9993	0.9997	0.9993	0.9997
Total	0.9987	0.0001	0.9984	0.9990	0.9984	0.9990
Difference	-0.0047	0.0007	-0.0061	-0.0033		

Difference is (Row 1 - Row 2)

Estimates of the Relative Risk (Row1/Row2)

Type of Study	Value	95% Confide	ence Limits
Case-Control (Odds Ratio)	10.8345	6.7405	17.4150
Cohort (Coll Risk)	10.7834	6.7150	17.3165
Cohort (Col2 Risk)	0.9953	0.9939	0.9967

Note that (54/10379)/(25/51815) = 10.78 and (10325/10379)/(51790/51815) = 0.995.

Coll risk is relative risk of *dying* and Coll risk is relative risk of *living*.

We can test all of $H_0: \theta = 1$, $H_0: \pi_1/\pi_2 = 1$, and $H_0: \pi_1 - \pi_2 = 0$. All of these null hypotheses are equivalent to $H_0: \pi_1 = \pi_2$, i.e. living is independent of wearing a seat belt.

A final method for testing independence is coming up in Section 3.2 that generalizes to larger $I \times J$ tables.

- It's probably worth reading or at least skimming 3.1.5, 3.1.6, 3.1.7 (pp. 72-75).
- Idea is straightforward (see Fig. 3.1) & wildly useful.
- Delta method is how we obtain the standard errors for $\log \hat{\theta}$ and $\log(\hat{\pi}_1/\hat{\pi}_2)$ on previous slides.

Assume one mult (n, π) distribution for the whole table. Let $\pi_{ij} = P(X = i, Y = j)$; we must have $\pi_{++} = 1$.

If the table is 2×2 , we can just look at $H_0: \theta = 1$.

In general, independence holds if $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$, or equivalently, $\mu_{ij} = n\pi_{i+}\pi_{+j}$.

That is, independence implies a constraint; the parameters $\pi_{1+}, \ldots, \pi_{I+}$ and $\pi_{+1}, \ldots, \pi_{+J}$ define all probabilities in the $I \times J$ table under the constraint.

Pearson's statistic is

$$X^2 = \sum_{i=1}^{I} \sum_{j=1}^{J} rac{(n_{ij} - \hat{\mu}_{ij})^2}{\hat{\mu}_{ij}},$$

where $\hat{\mu}_{ij} = n(n_{i+}/n)(n_{+j}/n)$, the MLE under H_0 .

There are I - 1 free $\{\pi_{i+}\}$ and J - 1 free $\{\pi_{+j}\}$. Then IJ - 1 - [(I - 1) + (J - 1)] = (I - 1)(J - 1). When H_0 is true, $X^2 \stackrel{\bullet}{\sim} \chi^2_{(I-1)(J-1)}$.

This is an example of the approach in 1.5.5.

Likelihood ratio statistic

The LRT statistic boils down to

$$G^{2} = 2 \sum_{i=1}^{I} \sum_{j=1}^{J} n_{ij} \log(n_{ij}/\hat{\mu}_{ij}),$$

and is also $G^2 \stackrel{\bullet}{\sim} \chi^2_{(I-1)(J-1)}$ when H_0 is true.

•
$$X^2 - G^2 \xrightarrow{p} 0.$$

- The approximation is better for X² than G² in smaller samples.
- The approximation can be okay when some

 \u03c6 i_{j} = n_{i+}n_{+j}/n

 are as small as 1, but most are at least 5.
- When in doubt, use small sample methods.
- Everything holds for product multinomial sampling too (fixed marginals for one variable)!

SAS code: tests for independence, seat-belt data

- chisq gives X^2 and G^2 tests for independence (coming up in these slides).
- expected gives expected cell counts under independence.
- exact plus chisq gives exact p-values for testing independence using X^2 and G^2 .

```
proc freq data=table order=data; weight count;
tables use*outcome / chisq norow nocol expected;
exact chisq;
run;
```

SAS output: table and asymptotic tests for independence

The FREQ Procedure

Table of use by outcome

use outcome

Frequency Expected	1				
Percent	fatal +	n	onfatal	.	Total
no	I 54	i.	10325	i	10379
	13.184	1	10366	Т	
	0.09	L	16.60	L	16.69
	+	+-		+	
yes	25	1	51790	Т	51815
-	65.816	1	51749	Т	
	0.04	L	83.27	I	83.31
	+	+-		+	
Total	79		62115		62194
	0.13		99.87		100.00

Statistics for Table of use by outcome

Statistic	DF	Value	Prob
Chi-Square	1	151.8729	<.0001
Likelihood Ratio Chi-Square	1	104.0746	<.0001

SAS output: exact tests for independence

Pearso	on (Chi-	-Square	Test
Chi-Square DF				151.8729 1
Asymptotic	\Pr	>	ChiSq	<.0001
Exact	Pr	>=	ChiSq	2.663E-24
Likelihood	l Ra	atio	o Chi-So	uare Test
Chi-Square DF				104.0746 1
Asymptotic Exact	Pr Pr	> >=	ChiSq ChiSq	<.0001 2.663E-24

These test the null H_0 that wearing a seat belt is independent of living. What do we conclude?

Obtaining p-values for exact tests are discussed in detail in Section 16.5.

	Belief in God						
Highest	Don't	No way to	Some higher	Believe	Believe	Know God	
degree	believe	find out	power	sometimes	but doubts	exists	
Less than	9	8	27	8	47	236	
high school							
High school or	23	39	88	49	179	706	
junior college							
Bachelor or	28	48	89	19	104	293	
graduate							

General Social Survey data cross-classifies opinion on whether God exists by highest education degree obtained.

SAS code, belief in God data

data table: input degree\$ belief\$ count @0; datalines: 11 912 813 2714 815 4716236 2 1 23 2 2 39 2 3 88 2 4 49 2 5 179 2 6 706 3 1 28 3 2 48 3 3 89 3 4 19 3 5 104 3 6 293 proc format; value \$dc '1' = 'less than high school' '2' = 'high school or junior college' '3' = 'bachelors or graduate': value \$bc '1' = 'dont believe' '2' = 'no way to find out' '3' = 'some higher power' '4' = 'believe sometimes' '5' = 'believe but doubts' '6' = 'know God exists'; run; proc freq data=table order=data; weight count; format degree \$dc. belief \$bc.: tables degree*belief / chisq expected norow nocol; run:

Annotated output from proc freq

degree	belief						
Frequency Expected	 						
Percent	dont bel ieve +	no way t o find o ut +	some hig her powe r	believe sometime s	believe but doub ts +	know God exists 	Total
less than high s chool	9 10.05	8 15.913	27 34.17	8 12.73	47 55.275	236 206.86	335
	0.45	0.40	1.35	0.40	2.35	11.80	16.75
high school or j unior college	23 32.52	39 51.49	88 110.57	49 41.192	179 178.86	706 669.37	1084
	1.15 +	1.95 +	4.40	2.45	8.95 +	35.30 ++	54.20
bachelors or gra duate	28 17.43	48 27.598	89 89 89	19 22.078	104 95.865	293 358.77	581
	1.40 +	2.40	4.45	0.95 +	5.20 +	14.65 ++	29.05
Total	60 3.00	95 4.75	204 10.20	76 3.80	330 16.50	1235 61.75	2000 100.00

Statistics for Table of degree by belief

Statistic	DF	Value	Prob
Chi-Square	10	76.1483	<.0001
Likelihood Ratio Chi-Square	10	73.1879	<.0001
Statistic		Value	ASE
Gamma		-0.2483	0.0334

Rejecting $H_0: \pi_{ij} = \pi_{i+}\pi_{+j}$ does not tell us about the nature of the association.

3.3.1 Pearson and standardized residuals

The Pearson residual is

$$e_{ij}=rac{n_{ij}-\hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}}},$$

where, as before, $\hat{\mu}_{ij} = n_{i+}n_{+j}/n$ is the estimate under $H_0: X \perp Y$.

When $H_0: X \perp Y$ is true, under multinomial sampling $e_{ij} \stackrel{\bullet}{\sim} N(0, v)$, where v < 1, in large samples.

Note that $\sum_{i=1}^{I} \sum_{j=1}^{J} e_{ij}^2 = X^2$.

Standardized Pearson residuals are Pearson residuals divided by their standard error under multinomial sampling (see Chapter 14).

$$r_{ij} = rac{n_{ij} - \hat{\mu}_{ij}}{\sqrt{\hat{\mu}_{ij}(1 - p_{i+})(1 - p_{+j})}},$$

where $p_{ij} = n_{ij}/n$ are MLEs under the full (non-independence) model. Values of $|r_{ij}| > 3$ happen very rarely when $H_0: X \perp Y$ is true and $|r_{ij}| > 2$ happen only roughly 5% of the time.

Pearson residuals and their standardized version tell us which cell counts are much larger or smaller than what we would expect under $H_0: X \perp Y$.

Residuals, belief in God data

Annotated output from proc genmod:

proc genmod order=data; class degree belief; model count = degree belief / dist=poi link=log residuals; run;

The GENMOD Procedure

a . .

a . .

				Sta	Sta	
	Raw	Pearson	Deviance	Deviance	Pearson	Likelihood
Observation	Residual	Residual	Residual	Residual	Residual	Residual
1	-1.050027	-0.33122	-0.337255	-0.375301	-0.368586	-0.374018
2	-7.912722	-1.983598	-2.196043	-2.466133	-2.227559	-2.41867
3	-7.17002	-1.226585	-1.273736	-1.473157	-1.418624	-1.459585
4	-4.730002	-1.325706	-1.423967	-1.591184	-1.481383	-1.569931
5	-8.275002	-1.113022	-1.142684	-1.370537	-1.33496	-1.35979
6	29.137492	2.0258686	1.9809013	3.5103847	3.5900719	3.5648903
7	-9.520085	-1.669418	-1.762793	-2.644739	-2.504646	-2.567827
8	-12.49071	-1.740695	-1.819318	-2.754505	-2.635467	-2.688045
9	-22.56805	-2.146245	-2.226274	-3.471424	-3.346635	-3.398513
10	7.8079994	1.2165594	1.1808771	1.7790347	1.8327913	1.8093032
11	0.1400133	0.0104692	0.0104678	0.016927	0.0169292	0.0169284
12	36.630048	1.4158081	1.403181	3.3524702	3.3826387	3.3773731
13	10.56995	2.5317662	2.3247777	2.8023308	3.0518386	2.8824417
14	20.402111	3.883624	3.51114	4.2710987	4.724204	4.4230839
15	29.737956	3.862983	3.5931704	4.5015643	4.8395885	4.6270782
16	-3.078006	-0.655073	-0.671253	-0.812499	-0.792914	-0.806333
17	8.1349809	0.8308573	0.8195034	1.0647099	1.0794611	1.0707466
18	-65.76757	-3.472204	-3.587324	-6.88618	-6.665198	-6.725887

Direction and 'significance' of standardized Pearson residuals r_{ij}

 $|r_{ij}| > 3$ indicate severe departures from independence; these are in boxes below.

Which cells are over-represented relative to independence? Which are under-represented? In general, what can one say about belief in God and education? Does this correspond with the γ statistic?

Also see mosaic plot on p. 82.

3.3.3 Partitioning Chi-squared

Recall from ANOVA the partitioning of SS Treatments via orthogonal contrasts. We can do something similar with contingency tables.

A χ^2_{ν} random variable X^2 can be written

$$X^2 = Z_1^2 + Z_2^2 + \dots + Z_{\nu}^2,$$

where Z_1, \ldots, Z_{ν} are *iid* N(0, 1) & so Z_1^2, \ldots, Z_{ν}^2 are *iid* χ_1^2 . Partitioning works by testing independence in a series of (collapsed) sub-tables in a particular way. Say *t* tests are performed. The *i*th test results in G_i^2 with associated degrees of freedom $df_i = \nu_i$. Then

$$G_1^2 + G_2^2 + \dots + G_t^2 = G^2$$
,

the LRT statistic from testing independence in the overall $I \times J$ table. Also, $\nu_1 + \nu_2 + \cdots + \nu_t = (I - 1)(J - 1)$, the degrees of freedom for the overall test.

One approach is to look at a series of $\nu = (I - 1)(J - 1) 2 \times 2$ tables (pp. 81-83) of the form:

$$\frac{\sum_{a < i} \sum_{b < j} n_{ab}}{\sum_{b < j} n_{ij}} \quad \frac{\sum_{a < i} n_{aj}}{n_{ij}}$$

for i = 2, ..., I and j = 2, ..., J. Each sub-table will have df $\nu_{ij} = 1$ and $\sum_{i=2}^{I} \sum_{j=2}^{J} G_{ij}^2 = G^2$ from the overall LRT.

Example: Origin of schizophrenia (p. 83)

	Schizophrenia origin		
Psych school	Biogenic	Environmental	Combination
Eclectic	90	12	78
Medical	13	1	6
Psychoanalytic	19	13	50

For the full table, testing $H_0: X \perp Y$ yields $G^2 = 23.036$ on 4 df, so p < 0.001.

	Bio	Env	$\hat{ heta}_{11} = 0.58$
Ecl	90	12	$G_{11}^2 = 0.294$
Med	13	1	p = 0.59
	Bio+Env	Com	$\hat{ heta}_{12} = 0.56$
Ecl	102	78	$G_{12}^2 = 1.359$
Med	14	6	p = 0.24
	Bio	Env	$\hat{ heta}_{21} = 5.4$
Ecl+Med	103	13	$G_{21}^2 = 12.953$
Psy	19	13	p = 0.0003
	Bio+Env	Com	$\hat{ heta}_{22} = 2.2$
Ecl+Med	116	84	$G_{22}^2 = 8.430$
Psv	32	50	p = 0.004

Note that: 0.294 + 1.359 + 12.953 + 8.430 = 23.036 as required. Also: 1 + 1 + 1 + 1 = 4.

Analysis...

The last two tables contribute more than 90% of the G^2 statistic.

- The first two tables suggest that eclectic and medical schools of thought tend to classify the origin of schizophrenia in roughly the same proportions.
- The last two tables suggest a difference in how the psychoanalytic school classifies the origin relative to eclectic and medical schools.
- The odds of a member of the psychoanalytical school ascribing the origin to be a combination (versus biogenic or environmental) is about 2.2 times greater than medical or eclectic. Within the last two origins, the odds of a member of the psychoanalytical school ascribing the origin to be a environmental is about 5.4 times greater than medical or eclectic.

- Lancaster partitioning looks at a lot of tables. There might be natural, simpler groupings of X and Y levels to look at. See your text for advice and discussion on partitioning.
- Partitioning G² and standardized Pearson residuals are two tools to help find where association occurs in a table once H₀ : X ⊥ Y is rejected.
- There are better methods for ordinal data, the subject of the next lecture.
- There are also exact tests of $H_0: X \perp Y$ which we'll briefly discuss next time as well. I included them on slide 18 to show how SAS returns the results.