> #  The data given here are the house size and house price  

> # from the example we studied in class  

> 

> # I am calling the data set "SizePrice".  

> # The independent variable is size.    

> # The response (dependent) variable is price.  

> 

> ##########

> ##

> # Reading the data into R:

> 

> my.datafile <- tempfile()

> cat(file=my.datafile, "

+ 0.951 30 

+ 1.036 39.9 

…
+ 3.627 199 

+ ", sep=" ")

> 

> options(scipen=999) # suppressing scientific notation

> 

> SizePrice <- read.table(my.datafile, header=FALSE, col.names=c("size", "price")) 

>   

> # Note we could also save the data columns into a file and use a command such as:

> # SizePrice <- read.table(file = "z:/stat_516/filename.txt", header=FALSE, col.names = c("size", "price"))

> 

> attach(SizePrice)

> 

> # The data frame called SizePrice is now created, 

> # with two variables, size and price.

> ##

> #########

> 

> # Let's do a scatter plot to see if a linear relationship is appropriate.  

> # In R, we list the independent variable first.

> 

> plot(size, price)
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> # The linear relationship seems reasonable based on the plot.  

> 

> # Let's use the lm() function to do estimate the slope and intercept of the linear model  

> # Let's also plot the estimated regression line over our scatterplot:            

> # The statement: price ~ size tells R that                                

> # the dependent variable is price and the independent variable is size.          

> 

> pricesize.reg <- lm(price ~ size)

> summary(pricesize.reg)

Call:

lm(formula = price ~ size)

Residuals:

    Min      1Q  Median      3Q     Max 

-38.489 -14.512  -1.422  14.919  54.389 

Coefficients:

            Estimate Std. Error t value            Pr(>|t|)    

(Intercept)    5.432      8.191   0.663                0.51    

size          56.083      4.128  13.587 <0.0000000000000002 ***

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

Residual standard error: 19.68 on 56 degrees of freedom

Multiple R-Squared: 0.7673,     Adjusted R-squared: 0.7631 

F-statistic: 184.6 on 1 and 56 DF,  p-value: < 0.00000000000000022 
> 

> # R gives a nice plot of the points with the  

> # connected estimated regression line overlain on it.  

> 

> plot(size, price); abline(pricesize.reg)
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> # So our least-squares regression line is mu-hat = 5.43 + 56.08 X   

> # How should we interpret these parameter estimates?               

> 

> ###############################################################################* 

> 

> # The ANOVA table partitions the sums of squares:   

> 

> anova(pricesize.reg)    

Analysis of Variance Table

Response: price

          Df Sum Sq Mean Sq F value                Pr(>F)    

size       1  71534   71534  184.62 < 0.00000000000000022 ***

Residuals 56  21698     387                                  

---

Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

> 

> # Note TSS = 93232, SSR = 71534, SSE = 21698.       

> # Note that TSS = SSR + SSE.                    

> 

> # Our estimate of sigma^2, MSE, can be found in the ANOVA table as 387.46904.  

> # Note that our estimate of sigma, "Residual Standard Error" as R calls it, is 19.68.   

> # (given above from the "summary" command) 

> 

> ###############################################################################** 

> 

> # Testing whether the true slope is zero:                          

> # We test H_0: beta_1 = 0 against the two-tailed alternative.      

> # The test statistic value t for this test is given as 13.59       

> # and the P-value is nearly 0. We reject H_0 and conclude          

> # the inclusion of X is the model is warranted.                    

> 

> # What about a 95% CI for beta_1?  

> # Note that the estimated slope is 56.083 and its standard error is given as 4.128.  

> 

> # From table A2, t_(.025) = 2.004 (for n-2 = 56 d.f.).  

> 

> # The 95% CI for beta_1 is (56.083 - 2.004*4.128, 56.083 + 2.004*4.128).  

> # Therefore the 95% CI for beta_1 is (47.81, 64.36).                  

> # How do we interpret this CI?                                        

> 

> ###############################################################################** 

> 

> # INFERENCES ABOUT THE RESPONSE VARIABLE  

> 

> # We want to (1) estimate the mean selling price for houses of size 1750 sq. feet  

> # and (2) predict the selling price of a new house of size 1750 sq. feet.  

> 

> x.value <- data.frame(size = 1.750)

> 

> predict(pricesize.reg, x.value)

[1] 103.5773

> 

> # This shows the prediction  

> # for the house which was 1750 square feet.  We see the predicted          

> # selling price for this house is about 103.577 thousand dollars.

> 

> # getting the 95% confidence interval for the mean at X=1750:

> 

> x.value <- data.frame(size = 1.750)

> 

> predict(pricesize.reg, x.value, interval="confidence", level=0.95)

          fit      lwr      upr

[1,] 103.5773 98.28416 108.8705

> 

> # getting the 90% prediction intervals for a new observation with X=1750:

> 

> x.value <- data.frame(size = 1.750)

> 

> predict(pricesize.reg, x.value, interval="prediction", level=0.95)

          fit      lwr      upr

[1,] 103.5773 63.79137 143.3632

>                 

> # The 95% CI for mean damage for all houses of 1750 square feet is between      

> # 98.284 and 108.871 thousand dollars.                                          

> # The prediction interval for the damage to a new house that is 1750 square feet  

> # is between 63.791 and 143.363 thousand dollars.                                

> 

> ###############################################################################** 

> 

> # One way to find the correlation coefficient r to to take the square root           

> # of r^2 (r^2 is given on the summary() output).  Be sure to give r the same sign as  

> # the estimated slope of the regression.                                             

> # For this example, r^2 is given as 0.7673 (how do we interpret this?) and so        

> # r = (0.7673)^0.5 = 0.876.  We know r is positive since the slope, 56.08, is positive.  

> 

> # With the cor() function, R will give us the correlation coefficient r directly:        

> 

> cor(price, size, use="c")

[1] 0.8759374

> 

> # R shows that r = 0.87594.  

> 

> cor.test(price, size, use="c")$p.value

[1] 0

> 

> # It also gives the P-value for the two-tailed test of  

> # whether the population correlation coefficient is 0.  This P-value is (near) 0, so  

> # we reject the null and conclude that the true correlation between size and price   

> # is not zero.                                                                     

>

> #####################################################################################** 

> 

> # The following R code will produce a residual plot and a Q-Q plot of the residuals:  

> 

> # residual plot:

> 

> plot(fitted(pricesize.reg), resid(pricesize.reg)); abline(h=0)

>
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> # Q-Q plot of the residuals:

> 

> qqnorm(resid(pricesize.reg))

> 

> #####################################################################################** 

>
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