
Example code for Chapter 6, Part 2 to focus on:

library(tidyverse)
library(mdsr)

Another example of reading .csv and Excel files from external sources:

library(readr)
election2 <-
read_csv(file="https://people.stat.sc.edu/hitchcock/Minneapolis_tidy.csv")
Or could use the base R 'read.csv' function (not as fast with large files):
election2 <-
read.csv(file="https://people.stat.sc.edu/hitchcock/Minneapolis_tidy.csv")

election2

election4 <-
read_csv(file="https://people.stat.sc.edu/hitchcock/Minneapolis_tidy_no_headers.csv",
col_names = F)
Or could use the base R 'read.csv' function (not as fast with large files):
election4 <-
read.csv(file="https://people.stat.sc.edu/hitchcock/Minneapolis_tidy_no_headers.csv",
header = F)

election4

Then we should provide the names in a separate step:
names(election4) <-
c("ward","precinct","registered","voters","absentee","total_turnout")

rm(election1, election2, election3, election4)

For files in which the delimiter that separates data values is something other than
a comma, can use
read_delim in the readr package:

read_delim(file="fullpathname.txt", delim = "|")

There are lots of other options in the read_csv and read_delim functions...

Reading HTML tables from a website
library(rvest)
url <- "http://en.wikipedia.org/wiki/Mile_run_world_record_progression"
tables <- url %>%
 read_html() %>%
 html_nodes("table")
The resulting object, tables, is a list:
is.list(tables)

There are 15 tables in the list 'tables':
length(tables)

plucking the 3rd of the 15 tables and saving it as 'amateur':
amateur <- tables %>%
 purrr::pluck(3) %>%
 html_table()

print(amateur, n=Inf)

Using parse_number to extract numeric information from a character string and store
it as a numeric column:
library(readr)
ordway_birds <- ordway_birds %>%
 mutate(
 Month = parse_number(Month),
 Year = parse_number(Year),
 Day = parse_number(Day)
)
ordway_birds %>%
 select(Timestamp, Year, Month, Day) %>%
 glimpse()

Try to calculate the mean year for the data set now:

mean(ordway_birds$Year, na.rm=T) # na.rm=T will remove the missing values before
calculating the mean

Note TimeStamp (which has date-time information) was a character variable, so we
can't do mathematical operations on it.

Use mdy_hms to convert TimeStamp to a true date-time (dttm) object called 'When':
library(lubridate)
birds <- ordway_birds %>%
 mutate(When = mdy_hms(Timestamp)) %>%
 select(Timestamp, Year, Month, Day, When, DataEntryPerson)
birds %>%
 glimpse()

Now we can plot 'When' on a meaningful numeric axis:
birds %>%
 ggplot(aes(x = When, y = DataEntryPerson)) +
 geom_point(alpha = 0.1, position = "jitter")

the 'first', 'last' and 'interval' function can work on date-time values:
bird_summary <- birds %>%
 group_by(DataEntryPerson) %>%
 summarize(
 start = first(When), # Picks out the earliest date-time value for a person
 finish = last(When) # Picks out the latest date-time value for a person
) %>%
 mutate(duration = interval(start, finish) / ddays(1)) # 'interval' computes the
difference between date-time values

Printing summary table:

bird_summary %>%
 na.omit()

A date that does not include a time:
as.Date(now())

Also:
today()

Converting date-time information stored in a character object into a true date-time
object:
library(lubridate)
example <- c("2021-04-29 06:00:00", "2021-12-31 12:00:00")
str(example)

converted <- ymd_hms(example)
str(converted)

See the difference:

now() - example

now() - converted

math on date-time values:
converted
converted[2] - converted[1]

Example Chapter 7 code to focus on:

loading packages:
library(tidyverse)
library(mdsr)
library(Lahman)
names(Teams)

Getting information about the columns in Teams:
str(Teams)
 glimpse(Teams)

Vectorized operation (takes a vector as input, returns a vector as output):
exp(1:3)

A summary function (takes a vector as input, returns a single number as output):
mean(1:3)

An iterative operation using a loop (not recommended):
averages <- NULL
for (i in 15:40) {
 averages[i - 14] <- mean(Teams[, i], na.rm = TRUE)
}
names(averages) <- names(Teams)[15:40]
averages

Simpler code using the colMeans function (recommended)
colMeans(Teams[,15:40], na.rm = TRUE)

Note that using the numbers 15 and 40 in the code makes this code non-reproducible
on other data tables
or on a potentially altered version of this data table...

Same iterative operation using 'map_dbl':
Teams %>%
 select(15:40) %>%
 map_dbl(mean, na.rm = TRUE)

This works:
Teams %>%
 select(name) %>%
 map(nchar)

Using 'across' to specify WHICH variables to summarize:
Teams %>%
 summarize(across(where(is.numeric), mean, na.rm = TRUE))

A more updated syntax, avoids warning...
Teams %>%

 summarize(across(where(is.numeric), \(x) mean(x, na.rm = TRUE)))

Another way to use 'across' to specify WHICH variables to summarize:
Teams %>%
 summarize(across(c(yearID, R:SF, BPF), mean, na.rm = TRUE))

Summaries of the Angels franchise, separated by different versions of the team
name:
angels <- Teams %>%
 filter(franchID == "ANA") %>%
 group_by(teamID, name) %>%
 summarize(began = first(yearID), ended = last(yearID)) %>%
 arrange(began)
angels

Iterating manually to see how long each 'angels' team name is:
angels_names <- angels %>%
 pull(name)
angels_names # a character vector containing the various Angels team names

nchar(angels_names[1])
nchar(angels_names[2])
nchar(angels_names[3])
nchar(angels_names[4])

Using 'map_int' to automate the iterated operations is better:
map_int(angels_names, nchar)

Since 'nchar' is vectorized, using it directly is even better!
nchar(angels_names)

writing our own function 'top5' to pick out the top 5 seasons based on Wins:
top5 <- function(data, team_name) {
 data %>%
 filter(name == team_name) %>%
 select(teamID, yearID, W, L, name) %>%
 arrange(desc(W)) %>%
 head(n = 5)
}

angels_names %>%
 map(top5, data = Teams)

Each element of 'angels_names' will in turn be the value of the 'team_name'
argument in the 'top5' function.

'map_dfr' will return a data frame (which we can then summarize) rather than a
list, which 'map' returns:

angels_names %>%
 map_dfr(top5, data = Teams)

Summary table separated by team name:
angels_names %>%
 map_dfr(top5, data = Teams) %>%
 group_by(teamID, name) %>%
 summarize(N = n(), mean_wins = mean(W)) %>%
 arrange(desc(mean_wins))

Example Chapter 14 code to focus on:

line plots of popularity of the male names "John", "Paul", "George", "Ringo"
library(tidyverse)
library(mdsr)
library(babynames)
Beatles <- babynames %>%
 filter(name %in% c("John", "Paul", "George", "Ringo") & sex == "M") %>%
 mutate(name = factor(name, levels = c("John", "George", "Paul", "Ringo")))
beatles_plot <- ggplot(data = Beatles, aes(x = year, y = n)) +
 geom_line(aes(color = name), size = 2)
beatles_plot

using 'plotly' package and 'ggplotly' function to make the beatles_plot object
interactive:
install.packages("plotly")
library(plotly)
ggplotly(beatles_plot)

beatles_plot2 <- ggplot(data = Beatles, aes(x = year, y = n, color=name)) +
geom_point()
ggplotly(beatles_plot2) # can try brushing/selecting with this plot ...

Creating interactive, searchable data table with the 'DT' package and 'datatable'
function:
install.packages("DT")
library(DT)
datatable(Beatles, options = list(pageLength = 10))

Animation Plots:

Before installing 'gganimate' initially, you may have to do:

install.packages("gifski")
install.packages("av")
and then restart the R session ...

install.packages('gganimate')
library(gganimate)
theme_set(theme_bw())

Using 'gganimate' to create animated time series plots
 library(gganimate)
 library(transformr)
 beatles_animation <- beatles_plot +
 transition_states(
 name,
 transition_length = 2,
 state_length = 1
) +
 enter_grow() +
 exit_shrink()

 animate(beatles_animation, height = 400, width = 800)

Maybe a better example of 'gganimate':

Start with a static plot (we've seen a basic bar plot kind of like this before):

my_plot <- ggplot(
 data = Beatles,
 aes(
 x = name,
 y = prop
)
) +
 geom_col() +
 xlab("Name") +
 ylab("Proportion with Name")

my_plot

This sums the proportions for each name over all the years in the data set (that's
why the "proportions" are more than 1!)

The transition_time variable specifies which variable you want to dynamic plot to
change with
(typically this would be a variable that measures time)
The 'labs' function with 'frame_time' allows the title to reflect
the changing values of the transition_time variable.

my_plot + ylim(c(0,0.1)) + transition_time(year) +
 labs(title = "Year: {frame_time}")

The dynamic plot appears as a gif in a separate window.

If you want to slow down the rate at which the frames change, then decrease the
"frames per second" (fps):

a1 <- my_plot + ylim(c(0,0.1)) + transition_time(year) +
 labs(title = "Year: {frame_time}")
animate(a1, nframes = 138, fps = 5) # a lower fps produces a slower animation

GenNeutral <- babynames %>%
 filter(name %in% c("Riley", "Lauren", "Cameron", "Taylor")) %>%
 mutate(name = factor(name, levels = c("Riley", "Lauren", "Cameron", "Taylor")))

my_plot2 <- ggplot(
 data = GenNeutral,
 aes(
 x = name,
 y = prop
)
) +
 geom_col() +
 xlab("Name") +
 ylab("Proportion with Name")

my_plot2 # This single plot is not really sensible, since again, it is summing annual
proportions across many years.

Doing separate panels by sex with facet_wrap:

a2 <- my_plot2 + ylim(c(0,0.02)) + facet_wrap(~sex) +
 transition_time(year) +
 labs(title = "Year: {frame_time}")

animate(a2, nframes = 138, fps = 5)

If you want the plot to stop at the end rather than wrap back around to the
beginning, use loop=FALSE:
animate(a2, nframes = 138, fps = 5, renderer = gifski_renderer(loop=FALSE))
magick::image_write(path = here::here("gfx/beatles-gganimate.png"), format =
"png")

