Common Probability Distributions, Means, Variances, and Moment-Generating Functions

Table 1 Discrete Distributions

Distribution	Probability Function	Mean	Variance	Moment- Generating Function
Binomial	$p(y) = \binom{n}{y} p^{y} (1-p)^{n-y};$ $y = 0, 1, \dots, n$	np	np(1-p)	$[pe^t + (1-p)]^n$
Geometric	$p(y) = p(1-p)^{y-1};$ y = 1, 2,	$\frac{1}{p}$	$\frac{1-p}{p^2}$	$\frac{pe^t}{1-(1-p)e^t}$
Hypergeometric	$p(y) = \frac{\binom{r}{y} \binom{N-r}{n-y}}{\binom{N}{n}};$ $y = 0, 1, \dots, n \text{ if } n \le r,$	$\frac{nr}{N}$	$n\left(\frac{r}{N}\right)\left(\frac{N-r}{N}\right)\left(\frac{N-n}{N-1}\right)$	does not exist in closed form
Poisson	$y = 0, 1,, r \text{ if } n > r$ $p(y) = \frac{\lambda^{y} e^{-\lambda}}{y!};$ $y = 0, 1, 2,$	λ	λ	$\exp[\lambda(e^t-1)]$
Negative binomial	$p(y) = {\binom{y-1}{r-1}} p^r (1-p)^{y-r};$ $y = r, r+1, \dots$	$\frac{r}{p}$	$\frac{r(1-p)}{p^2}$	$\left[\frac{pe^t}{1-(1-p)e^t}\right]'$

able 2 Continuous Distributions						
	Probability Function	Mean	Variance	Moment- Generating Function		
Distribution Uniform	$f(y) = \frac{1}{\theta_2 - \theta_2}; \theta_1 \le y \le \theta_2$	$\frac{\theta_1+\theta_2}{2}$	$\frac{(\theta_2-\theta_1)^2}{12}$	$\frac{e^{t\theta_2}-e^{t\theta_1}}{t(\theta_2-\theta_1)}$		
Normal	$f(y) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left[-\left(\frac{1}{2\sigma^2}\right)(y-\mu)^2\right]$ $-\infty < y < +\infty$	μ	σ^2	$\exp\left(\mu t + \frac{t^2 \sigma^2}{2}\right)$		
Exponential	$f(y) = \frac{1}{\beta} e^{-y/\beta}; \beta > 0$ $0 < y < \infty$	β	eta^2	$(1-\beta t)^{-1}$		
Gamma	$f(y) = \left[\frac{1}{\Gamma(\alpha)\beta^{\alpha}}\right] y^{\alpha-1} e^{-y/\beta};$ $0 < y < \infty$	αβ	$lphaeta^2$	$(1-\beta t)^{-\alpha}$		
Chi-square	$f(y) = \frac{(y)^{(\nu/2)-1}e^{-y/2}}{2^{\nu/2}\Gamma(\nu/2)};$ y > 0	v	2ν	$(1-2t)^{-\nu/2}$		
Beta	$f(y) = \left[\frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)}\right] y^{\alpha - 1} (1 - y)^{\beta - 1};$ $0 < y < 1$	$\frac{\alpha}{\alpha + \beta}$	$\frac{\alpha\beta}{(\alpha+\beta)^2(\alpha+\beta+1)}$	does not exist in closed form		

The Binomial Expansion of $(x + y)^n$ Let x and y be any real numbers, then

Showith Expansion of
$$(x + y)^n = \binom{n}{0} x^n y^0 + \binom{n}{1} x^{n-1} y^1 + \binom{n}{2} x^{n-2} y^2 + \dots + \binom{n}{n} x^0 y^n$$

$$= \sum_{i=0}^n \binom{n}{i} x^{n-i} y^i.$$

The Sum of a Geometric Series Let r be a real number such that |r| < 1, and m be any integer $m \ge 1$

$$\sum_{i=0}^{\infty} r^{i} = \frac{1}{1-r}, \quad \sum_{i=1}^{\infty} r^{i} = \frac{r}{1-r}, \quad \sum_{i=0}^{m} r^{i} = \frac{1-r^{m+1}}{1-r}.$$

The (Taylor) Series Expansion of e^x Let x be any real number, then

$$e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}.$$

Some useful formulas for particular summations follow. The proofs (omitted) are most easily established by using mathematical induction.

$$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$$

$$\sum_{i=1}^{n} i^3 = \left(\frac{n(n+1)}{2}\right)^2.$$

Gamma Function Let t > 0, then $\Gamma(t)$ is defined by the following integral:

$$\Gamma(t) = \int_0^\infty y^{t-1} e^{-y} dy.$$

Using the technique of integration by parts, it follows that for any t > 0

$$\Gamma(t+1) = t\Gamma(t)$$

and if t = n, where n is an integer,

$$\Gamma(n) = (n-1)!.$$

Further,

$$\Gamma(1/2) = \sqrt{\pi}.$$

If $\alpha, \beta > 0$, the **Beta function**, $B(\alpha, \beta)$, is defined by the following integral,

$$B(\alpha, \beta) = \int_0^1 y^{\alpha - 1} (1 - y)^{\beta - 1} dy$$

and is related to the gamma function as follows:

$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha + \beta)}.$$