
STAT 509 – Sections 6.1-6.2:  Linear Regression 

 

• Mostly we have studied the behavior of a single 

random variable. 

• Often, however, we gather data on two random 

variables. 

Response Variable (Y):  Measures the major outcome of 

interest in the study (also called the dependent variable). 

Independent Variable (X):  Another variable whose 

value explains, predicts, or is associated with the value 

of the response variable  (also called the predictor or the 

regressor). 

 

• We wish to determine:  Is there a relationship between 

the two r.v.’s? 

• Can we use the values of one r.v. to predict the other 

r.v.? 

 

Observational Studies vs. Designed Experiments 

 

• In observational studies, we simply measure or 

observe both variables on a set of sampled individuals. 

 

• In a designed experiment, we manipulate the 

predictors (factors), setting them at specific values of 

interest.  We then observe what values of the response 

correspond to the fixed predictor values. 

 

 



Example 1 (Table 6.1):  We observe the Rockwell 

Hardness (X) and Young’s modulus (Y) for seven high-

density metals.  The resulting data were: 

 

X: 41 41 44 40 43 15 40   

Y: 310 340 380 317 413 62 119 

 

Example 2 (Table 6.3):  A chemical engineering class 

studied the effect of the reflux ratio (X) on the ethanol 

concentration (Y) of an ethanol-water distillation.  For a 

variety of settings of the reflux ratio, the ethanol 

concentration was measured: 

 

X: 20  30  40  50  60   

Y: 0.446 0.601 0.786 0.928 0.950 

 

We assume there is random error in the observed 

response values, implying a probabilistic relationship 

between the 2 variables. 

 

• Often we assume a straight-line relationship between 

two variables. 

• This is known as simple linear regression. 

 

Yi = 0 + 1xi + i 

 

Yi = ith response value  0 = Intercept of regression 

line 

xi = ith predictor value   1 = slope of regression line 

i = ith random error component 

 



 

• We assume the random errors i have mean 0 (and 

variance 2
), so that E(Y) = 0 + 1x. 

 

• Typically, in practice, 0 and 1 are unknown 

parameters.  We estimate them using the sample data. 

 

Fitting the Model (Least Squares Method) 

 

• If we gather data (Xi, Yi) for several individuals, we 

can use these data to estimate 0 and 1 and thus 

estimate the linear relationship between Y and X. 

 

• First step:  Decide if a straight-line relationship 

between Y and X makes sense.   

 

Plot the bivariate data using a scatter plot. 

 

 

 

 

 

 

 

R code: 
> x <- c(20,30,40,50,60) 

> y <- c(.446,.601,.786,.928,.950) 

> plot(x,y,pch=19) 

 

• Once we settle on the “best-fitting” regression line, its 

equation gives a predicted Y-value for any new X-value. 



• How do we decide, given a data set, which line is the 

best-fitting line? 

 

 

 

 

 

 

 

 

 

Note that usually, no line will go through all the points 

in the data set. 

 

For each point, the residual = 

(Some positive residuals, some negative residuals) 

 

We want the line that makes these errors as small as 

possible (so that the line is “close” to the points). 

 

Least-squares method:  We choose the line that 

minimizes the sum of all the squared residuals (SSres).   

 

SSres =  

 

Least squares prediction equation: 

 

XbbY 10
ˆ   

where 0b and 1b are the estimates of 0 and 1 that 

produce the best-fitting line in the least squares sense. 



Formulas for 0b and 1b : 

 

Estimated slope and intercept: 
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and n = the number of observations. 

 

Example (see Table 6.4): 

 

 iY  =     2

iX  =  

 

 iX  =    iiYX  =  

 

SSxy =  

 

 

SSxx = 

 

 

 

 

R code: 
> x <- c(20,30,40,50,60) 

> y <- c(.446,.601,.786,.928,.950) 

> lm(y ~ x) 



Derivation of Formulas for 0b and 1b : 

 

 

Recall that SSres =  

 

To minimize the SSres with respect to 0b and 1b : 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 



Interpretations: 

Slope: 

 

 

 

Intercept: 

 

 

 

Example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Avoid extrapolation:  predicting/interpreting the 

regression line for X-values outside the range of X in the 

data set. 

 

 



Model Assumptions 

 

• Recall model equation:  Yi = 0 + 1xi + i 

 

• To perform inference about our regression line, we 

need to make certain assumptions about the random 

error component, i.  We assume: 

 

(1) The mean of i is 0.  (In the long run, the values 

of the random errors average zero.) 

(2) The variance of the probability distribution of i 

is constant for all values of X.  We denote the 

variance of i by 2
. 

(3) The probability distribution of i is normal. 

(4) The values of i for any two observed Y-values 

are independent – the value of i has no effect on 

the value of j for the ith and jth Y-values. 

 

Picture: 

 

 

 

 

 

 

 

 

 

We will discuss later how to check these assumptions 

for a particular data set. 



Estimating 2
 

 

Typically the error variance 2
 is unknown. 

 

An unbiased estimate of 2
 is the mean squared residual 

(MSres). 

 

MSres =   SSres / (n–2) 

                

where SSres = SSyy - 1b SSxy  
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Note that an estimate of  is 
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Testing the Usefulness of the Model 

 

For the SLR model,  E(Y) = 0 + 1x. 

 

Note:  X is completely useless in helping to predict or 

explain Y if and only if 1 = 0. 

 

So to test the usefulness of the model for predicting Y, 

we test: 

 

 

 



If we reject H0 and conclude Ha is true, then we 

conclude that X does provide information for the 

prediction of Y. 

 

Picture: 

 

 

 

 

 

 

 

 

 

 

 

Recall that the estimate 1b is a statistic that depends on 

the sample data. 

This 1b  has a sampling distribution. 

 

If our four SLR assumptions hold, the sampling 

distribution of 1b  is normal with mean 1 and standard 

deviation                   which we estimate by  

 

 

 

Under H0: 1 = 0, the statistic 
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has a t-distribution with n – 2 d.f. 

 



Test about the Slope 

 

    One-Tailed Tests   Two-Tailed Test 

H0: 1 = 0  H0: 1 = 0   H0: 1 = 0 

Ha: 1 < 0     Ha: 1 > 0   Ha: 1 ≠ 0 

Test statistic:   t = 
xxres SSMS
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Rejection region: 

t < -tn-2   t > tn-2   t > t/2 or t < -t/2 

 

P-value: 

left tail area   right tail area    2*(tail area outside t) 

outside t   outside t  

 

Example:  In the ethanol example, recall 1b =  

Is the real 1 significantly greater than 0?   

(Use  = .05.) 

 

 

 

 

 

 

 

 

 

 

 

 



A 100(1 – )% Confidence Interval for the true slope 1 

is given by: 

 

 

 

where t/2 is based on n – 2 d.f. 

 

In our example, a 95% CI for 1 is: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

R code: 

 
> x <- c(20,30,40,50,60) 

> y <- c(.446,.601,.786,.928,.950) 

> summary(lm(y ~ x)) 

> plot(x, y, pch=19); abline(lm(y ~ x)) 

 

 

 



Correlation 

 

The scatterplot gives us a general idea about whether 

there is a linear relationship between two variables. 

 

More precise:  The coefficient of correlation (denoted r) 

is a numerical measure of the strength and direction of 

the linear relationship between two variables. 

 

Formula for r (the correlation coefficient between two 

variables X and Y): 
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Most computer packages will also calculate the 

correlation coefficient. 

 

Interpreting the correlation coefficient: 

 

• Positive r  => The two variables are positively 

associated (large values of one variable correspond to 

large values of the other variable) 

• Negative r  => The two variables are negatively 

associated (large values of one variable correspond to 

small values of the other variable) 

• r = 0  => No linear association between the two 

variables. 

 

Note:  -1 ≤ r ≤ 1 always. 

 



How far r is from 0 measures the strength of the linear 

relationship: 

 

• r  nearly 1 => Strong positive relationship between the 

two variables  

• r  nearly -1 => Strong negative relationship between 

the two variables 

• r  near 0 => Weak relationship between the two 

variables 

 

Pictures: 

 

 

 

 

 

 

 

 

 

 

Example (Rockwell hardness / Young’s modulus data): 

 
> rock <- c(41,41,44,40,43,15,40) 

> young <- c(310,340,380,317,413,62,119) 

> cor(rock, young) 

[1] 0.7759845 

 

 

Interpretation? 

 

 



Notes:  (1)  Correlation makes no distinction between 

predictor and response variables. 

(2)  Variables must be numerical to calculate r. 

(3) Correlation only measures the linear association 

between two variables, not any nonlinear relationship. 

 

The square of the correlation coefficient is called the 

coefficient of determination, R
2
. 

 

Interpretation:  R
2
 represents the proportion of sample 

variability in Y that is explained by its linear 

relationship with X. 
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   (R
2
 always between 0 and 1) 

For the Rockwell hardness / Young’s modulus data 

example, R
2
 =  

 

Interpretation: 

 

 

 

 

For the reflux ratio / ethanol concentration data 

example, R
2
 =  

 

 

 

Interpretation: 

 



Estimation and Prediction with the Regression Model 

 

Major goals in using the regression model: 

(1)  Determining the linear relationship between Y and 

X (accomplished through inferences about 1) 

 

(2) Estimating the mean value of Y, denoted E(Y), for a 

particular value of X. 

Example:  Among all columns with reflux ratio 35 units, 

what is the estimated mean ethanol concentration? 

 

(3)  Predicting the value of Y for a particular value of X. 

Example:  For a “new” column having reflux ratio 35 

units, what is the predicted ethanol concentration? 

 

• The point estimate for these last two quantities is the 

same; it is:   

 

 

Example: 

 

 

 

 

 

 

• However, the variability associated with these point 

estimates is very different. 

 

• Which quantity has more variability, a single Y-value 

or the mean of many Y-values? 



This is seen in the following formulas: 

 

100(1 – )% Confidence Interval for the mean value of 

Y at X = x0: 

 

 

 

 

 

where t/2 based on n – 2 d.f. 

 

100(1 – )% Prediction Interval for the an individual 

new value of Y at X = x0: 

 

 

 

 

 

where t/2 based on n – 2 d.f. 

 

The extra “1” inside the square root shows the 

prediction interval is wider than the CI, although they 

have the same center. 

 

Note:  A “Prediction Interval” attempts to contain a 

random quantity, while a confidence interval attempts 

to contain a (fixed) parameter value. 

 

 



The variability in our estimate of E(Y) reflects the fact 

that we are merely estimating the unknown 0 and 1. 

 

The variability in our prediction of the new Y includes 

that variability, plus the natural variation in the Y-

values. 

 

Example (ethanol concentration data): 

95% CI for E(Y) with X = 35: 

 

 

 

 

 

 

 

 

  
> x <- c(20,30,40,50,60) 
> y <- c(.446,.601,.786,.928,.950) 

> predict(lm(y ~ x), data.frame(x = c(35)),   

interval="confidence", level=0.95) 

 

95% PI for a new Y having X = 35: 

 

 

 
 

 

 

 

> predict(lm(y ~ x), data.frame(x = c(35)), 

interval="prediction", level=0.95) 


