Numerical Measures of Central Tendency

- Often, it is useful to have special numbers which summarize characteristics of a data set
- These numbers are called <u>descriptive statistics</u> or <u>summary statistics</u>.
- A measure of central tendency is a number that indicates the "center" of a data set, or a "typical" value.

<u>Sample mean</u> $\overline{\mathbf{X}}$: For *n* observations,

 $\overline{\mathbf{X}} = \Sigma X_{\mathbf{i}} / n =$

■ The sample mean is often used to estimate the population mean µ. (Typically we can't calculate the population mean.)

Alternative: <u>Sample median</u> M: the "middle value" of the data set. (At most 50% of data is greater than M and at most 50% of data is less than M.)

Steps to calculate M:

- (1) Order the *n* data values from smallest to largest.
- (2) Observation in position (n+1)/2 in the ordered list is the median M.
- (3) If (n+1)/2 is not a whole number, the median will be the average of the middle two observations.

For large data sets, typically use computer to calculate M.

Example: Per capita CO₂ emissions for 25 European countries (2006): Ordered Data: 3.3 4.2 5.6 5.6 5.7 5.7 6.2 6.3 7.0 7.6 8.0 8.1 8.3 8.6 8.7 9.4 9.7 9.9 10.3 10.3 10.4 11.3 12.7 13.1 24.5

Luxembourg with 24.5 metric tons per capita is an outlier (unusual value).

What if we delete this country?

Which measure was more affected by the outlier?

Shapes of Distributions

When the pattern of data to the left of the center value looks the same as the pattern to the right of the center, we say the data have a symmetric distribution.

Picture:

If the distribution (pattern) of data is imbalanced to one side, we say the distribution is <u>skewed</u>.

Skewed to the Right (long right "tail"). Picture:

Skewed to the Left (long left "tail"). Picture:

Comparing the mean and the median can indicate the skewness of a data set.

Other measures of central tendency

- <u>Mode</u>: Value that occurs most frequently in a data set.
- In a histogram, the <u>modal class</u> is the class with the most observations in it.
- A <u>bimodal</u> distribution has two separated peaks:

The most appropriate measure of central tendency depends on the data set: Skewed?

Symmetric?

Categorical?

Numerical Measures of Variability

- Knowing the center of a data set is only part of the information about a variable.
- Also want to know how "spread out" the data are.

Example: You want to invest in a stock for a year. Two stocks have the same average annual return over the past 30 years. But how much does the annual return vary from year to year?

<u>Question</u>: How much is a data set typically spread out <u>around its mean</u>?

Deviation from Mean: For each *x*-value, its deviation from the mean is:

Example (Heights of sample of plants): Data: 1, 1, 1, 4, 7, 7, 7. Deviations:

Squared Deviations:

- A common measure of spread is based on the squared deviations.
- <u>Sample variance</u>: The "average" squared deviation (using *n*-1 as the divisor)

Definitional Formula:

 $s^2 =$

Previous example: $s^2 =$

Shortcut formula: $s^2 =$

Another common measure of spread: <u>Sample standard deviation</u> = positive square root of sample variance.

Previous example: Standard deviation: *s* =

Note: *s* is measured in same units as the original data.

Why divide by *n*-1 instead of *n*? Dividing by *n*-1 makes the sample variance a more accurate estimate of the population variance, σ^2 .

The larger the standard deviation or the variance is, the more spread/variability in the data set.

Usually use computers/calculators to calculate s^2 and s.

Rules to Interpret Standard Deviations

Think about the shape of a histogram for a data set as an indication of the shape of the distribution of that variable.

Example: "Mound-shaped" distributions:

(roughly symmetric, peak in middle)

Special rule that applies to data having a mound-shaped distribution:

Empirical Rule: For data having a mound-shaped distribution,

- About 68% of the data fall within 1 standard deviation of the mean (between x̄ s and x̄ + s for samples, or between μ σ and μ + σ for populations)
- About 95% of the data fall within 2 standard deviations of the mean (between x̄ 2s and x̄ + 2s for samples, or between μ 2σ and μ + 2σ for populations)
- About 99.7% of the data fall within 3 standard deviations of the mean (between x̄ 3s and x̄ + 3s for samples, or between μ 3σ and μ + 3σ for populations)

Picture:

Example: Suppose IQ scores have mean 100 and standard deviation 15, and their distribution is mound-shaped.

Example: The rainfall data have a mean of 34.9 inches and a standard deviation of 13.7 inches.

What if the data may not have a mound-shaped distribution?

<u>Chebyshev's Rule</u>: For <u>any</u> type of data, the proportion of data which are within *k* standard deviations of the mean is at least:

In the general case, at least what proportion of the data lie within 2 standard deviations of the mean?

What proportion would this be if the data were known to have a mound-shaped distribution?

Rainfall example revisited:

Numerical Measures of Relative Standing

- These tell us how a value compares relative to the rest of the population or sample.
- <u>Percentiles</u> are numbers that divide the ordered data into 100 equal parts. The *p*-th percentile is a number such that at most *p*% of the data are less than that number and at most (100 *p*)% of the data are greater than that number.

Well-known Percentiles: <u>Median</u> is the 50th percentile. <u>Lower Quartile</u> (Q_L) is the 25th percentile: At most 25% of the data are less than Q_L ; at most 75% of the data are greater than Q_L .

<u>Upper Quartile</u> (Q_U) is the 75th percentile: At most 75% of the data are less than Q_U ; at most 25% of the data are greater than Q_U .

The <u>5-number summary</u> is a useful overall description of a data set: (Minimum, Q_L, Median, Q_U, Maximum).

Example (Rainfall data):

Z-scores

-- These allow us to compare data values from different samples or populations.

-- The z-score of any observation is found by subtracting the mean, and then dividing by the standard deviation.

For any measurement *x*,

Sample z-score:

Population z-score:

The z-score tells us how many standard deviations above or below the mean that an observation is.

Example: You get a 72 on a calculus test, and an 84 on a Spanish test. Test data for calculus class: mean = 62, s = 4. Test data for Spanish class: mean = 76, s = 5.

Calculus z-score:

Spanish z-score:

Which score was better relative to the class's performance?

Your friend got a 66 on the Spanish test:

z-score:

Boxplots, Outliers, and Normal Q-Q plots

<u>Outliers</u> are observations whose values are unusually large or small relative to the whole data set.

Causes for Outliers:

- (1) Mistake in recording the measurement
- (2) Measurement comes from some different population
- (3) Simply represents an unusually rare outcome

Detecting Outliers

<u>Boxplots</u>: A <u>boxplot</u> is a graph that depicts elements in the 5-number summary.

Picture:

- The "box" extends from the lower quartile Q_L to the upper quartile Q_U.
- The length of this box is called the Interquartile Range (IQR) of the data.
- $\blacksquare IQR = Q_U Q_L$
- The "whiskers" extend to the smallest and largest data values, <u>except for outliers</u>.
- We generally use software to create boxplots.

Defining an outlier:

- If a data value is less than Q_L 1.5(IQR) or greater than Q_U + 1.5(IQR), then it is considered an outlier and given a separate mark on the boxplot.
- A different rule of thumb is to consider a data value an outlier if its z-score is greater than 3 or less than -3.

Interpreting boxplots

- A long "box" indicates large variability in the data set.
- If one of the whiskers is long, it indicates skewness in that direction.
- A "balanced" boxplot indicates a symmetric distribution.

Outliers should be rechecked to determine their cause. Do not automatically delete outliers from the analysis --they may indicate something important about the population.

Assessing the Shape of a Distribution

-- A <u>normal distribution</u> is a special type of symmetric distribution characterized by its "bell" shape.

Picture:

- How do we determine if a data set might have a normal distribution?
- Check the histogram: Is it bell-shaped?
- More precise: <u>Normal Q-Q</u> plot (a.k.a. Normal probability plot). (see p. 250-251)
- Plots the ordered data against the z-scores we would expect to get if the population were really normal.
- If the Q-Q plot resembles a straight line, it's reasonable to assume the data come from a normal distribution.
- If the Q-Q plot is nonlinear, data are probably not normal.