Numerical Measures of Central Tendency

■ Often, it is useful to have special numbers which summarize characteristics of a data set
■ These numbers are called descriptive statistics or summary statistics.
A measure of central tendency is a number that indicates the "center" of a data set, or a "typical" value.

Sample mean $\overline{\mathbf{X}}$: For \boldsymbol{n} observations,
$\overline{\mathbf{X}}=\Sigma X_{\mathrm{i}} / n=$

The sample mean is often used to estimate the population mean μ. (Typically we can't calculate the population mean.)

Alternative: Sample median M: the "middle value" of the data set. (At most 50% of data is greater than M and at most 50% of data is less than M.)

Steps to calculate M:

(1) Order the \boldsymbol{n} data values from smallest to largest.
(2) Observation in position $(n+1) / 2$ in the ordered list is the median M .
(3) If $(n+1) / 2$ is not a whole number, the median will be the average of the middle two observations.

For large data sets, typically use computer to calculate M.

Example: Per capita CO_{2} emissions for 25 European countries (2006): Ordered Data: 3.3 4.2 5.6 5.6 5.7 5.76 .26 .37 .07 .68 .08 .18 .38 .68 .79 .49 .79 .9 10.310 .310 .411 .312 .713 .124 .5

Luxembourg with $\mathbf{2 4 . 5}$ metric tons per capita is an outlier (unusual value).

What if we delete this country?

Which measure was more affected by the outlier?

Shapes of Distributions

■ When the pattern of data to the left of the center value looks the same as the pattern to the right of the center, we say the data have a symmetric distribution.
Picture:

If the distribution (pattern) of data is imbalanced to one side, we say the distribution is skewed.

Skewed to the Right (long right "tail"). Picture:

Skewed to the Left (long left "tail"). Picture:

Comparing the mean and the median can indicate the skewness of a data set.

Other measures of central tendency
■ Mode: Value that occurs most frequently in a data set.
■ In a histogram, the modal class is the class with the most observations in it.

- A bimodal distribution has two separated peaks:

The most appropriate measure of central tendency depends on the data set:
Skewed?

Symmetric?

Categorical?

Numerical Measures of Variability
■ Knowing the center of a data set is only part of the information about a variable.
■ Also want to know how "spread out" the data are.

Example: You want to invest in a stock for a year. Two stocks have the same average annual return over the past 30 years. But how much does the annual return vary from year to year?

Question: How much is a data set typically spread out around its mean?

Deviation from Mean: For each x-value, its deviation from the mean is:

Example (Heights of sample of plants):
Data:
$1,1,1,4,7,7,7$.
Deviations:

Squared Deviations:

- A common measure of spread is based on the squared deviations.
■ Sample variance: The "average" squared deviation (using $\boldsymbol{n - 1}$ as the divisor)

Definitional Formula:
$s^{2}=$
Previous example: $s^{2}=$

Shortcut formula: $s^{\mathbf{2}}=$
Another common measure of spread:
Sample standard deviation $=$ positive square root of sample variance.

Previous example: Standard deviation: $s=$
Note: s is measured in same units as the original data.
Why divide by $\boldsymbol{n}-\mathbf{1}$ instead of \boldsymbol{n} ? Dividing by $\boldsymbol{n} \boldsymbol{- 1}$ makes the sample variance a more accurate estimate of the population variance, σ^{2}.

The larger the standard deviation or the variance is, the more spread/variability in the data set.

Usually use computers/calculators to calculate s^{2} and s.

Rules to Interpret Standard Deviations

\square Think about the shape of a histogram for a data set as an indication of the shape of the distribution of that variable.

Example: "Mound-shaped" distributions:
(roughly symmetric, peak in middle)
Special rule that applies to data having a mound-shaped distribution:

Empirical Rule: For data having a mound-shaped distribution,

- About 68% of the data fall within 1 standard deviation of the mean (between $\overline{\mathrm{x}}-s$ and $\overline{\mathrm{x}}+s$ for samples, or between $\mu-\sigma$ and $\mu+\sigma$ for populations)
- About 95% of the data fall within 2 standard deviations of the mean (between $\overline{\mathrm{x}}-2 s$ and $\overline{\mathrm{x}}+2 s$ for samples, or between $\mu-2 \sigma$ and $\mu+2 \sigma$ for populations)
■ About 99.7% of the data fall within 3 standard deviations of the mean (between $\overline{\mathrm{x}}-3 s$ and $\overline{\mathrm{x}}+3 s$ for samples, or between $\mu-3 \sigma$ and $\mu+3 \sigma$ for populations)

Picture:

Example: Suppose IQ scores have mean 100 and standard deviation 15, and their distribution is moundshaped.

Example: The rainfall data have a mean of 34.9 inches and a standard deviation of 13.7 inches.

What if the data may not have a mound-shaped distribution?

Chebyshev's Rule: For any type of data, the proportion of data which are within k standard deviations of the mean is at least:

In the general case, at least what proportion of the data lie within 2 standard deviations of the mean?

What proportion would this be if the data were known to have a mound-shaped distribution?

Rainfall example revisited:

Numerical Measures of Relative Standing

\square These tell us how a value compares relative to the rest of the population or sample.

- Percentiles are numbers that divide the ordered data into 100 equal parts. The p-th percentile is a number such that at most $p \%$ of the data are less than that number and at most $(100-p) \%$ of the data are greater than that number.

Well-known Percentiles: Median is the 50 ${ }^{\text {th }}$ percentile. Lower Quartile (Q_{L}) is the $\mathbf{2 5}{ }^{\text {th }}$ percentile: At most $\mathbf{2 5 \%}$ of the data are less than Q_{L}; at most 75% of the data are greater than Q_{L}.
Upper Quartile (Q_{U}) is the $\mathbf{7 5}^{\text {th }}$ percentile: At most $\mathbf{7 5 \%}$ of the data are less than Q_{U}; at most 25% of the data are greater than \mathbf{Q}_{U}.

The $\mathbf{5}$-number summary is a useful overall description of a data set: (Minimum, Q_{L}, Median, Q_{U}, Maximum).

Example (Rainfall data):

Z-scores

-- These allow us to compare data values from different samples or populations.
-- The z-score of any observation is found by subtracting the mean, and then dividing by the standard deviation.

For any measurement x,
Sample z-score:
Population z-score:

The z-score tells us how many standard deviations above or below the mean that an observation is.

Example: You get a 72 on a calculus test, and an 84 on a Spanish test.
Test data for calculus class: mean $=62, s=4$. Test data for Spanish class: mean $=\mathbf{7 6}, s=5$.

Calculus z-score:
Spanish z-score:

Which score was better relative to the class's performance?

Your friend got a 66 on the Spanish test:
z-score:
Boxplots, Outliers, and Normal Q-O plots
Outliers are observations whose values are unusually large or small relative to the whole data set.

Causes for Outliers:

(1) Mistake in recording the measurement
(2) Measurement comes from some different population
(3) Simply represents an unusually rare outcome

Detecting Outliers

Boxplots: A boxplot is a graph that depicts elements in the 5 -number summary.

Picture:

■ The "box" extends from the lower quartile Q_{L} to the upper quartile \mathbf{Q}_{U}.
\square The length of this box is called the Interquartile Range (IQR) of the data.
$■ I Q R=Q_{U}-Q_{L}$
■ The "whiskers" extend to the smallest and largest data values, except for outliers.

- We generally use software to create boxplots.

Defining an outlier:

■ If a data value is less than $\mathrm{Q}_{\mathrm{L}}-1.5(\mathrm{IQR})$ or greater than $Q_{U}+1.5(I Q R)$, then it is considered an outlier and given a separate mark on the boxplot.
\square A different rule of thumb is to consider a data value an outlier if its z -score is greater than 3 or less than -3 .

Interpreting boxplots

■ A long "box" indicates large variability in the data set.
■ If one of the whiskers is long, it indicates skewness in that direction.
■ A "balanced" boxplot indicates a symmetric distribution.

Outliers should be rechecked to determine their cause. Do not automatically delete outliers from the analysis --they may indicate something important about the population.

Assessing the Shape of a Distribution

-- A normal distribution is a special type of symmetric distribution characterized by its "bell" shape.

Picture:

■ How do we determine if a data set might have a normal distribution?
■ Check the histogram: Is it bell-shaped?
■ More precise: Normal Q-Q plot (a.k.a. Normal probability plot). (see p. 250-251)
\square Plots the ordered data against the z -scores we would expect to get if the population were really normal.
■ If the Q-Q plot resembles a straight line, it's reasonable to assume the data come from a normal distribution.
If the Q-Q plot is nonlinear, data are probably not normal.

