
STAT 515 -- Chapter 6:  Sampling Distributions 
 
Definition:  Parameter = a number that characterizes a 
population (example: population mean μ) – it’s typically 
unknown. 
 
Statistic = a number that characterizes a sample 

(example: sample mean X
_

) – we can calculate it from 
our sample data. 

We use the sample mean X
_

 to estimate the population 
mean μ. 

Suppose we take a sample and calculate X
_

.   

Will X
_

 equal μ? Will X
_

 be close to μ? 

Suppose we take another sample and get another X
_

. 

Will it be same as first X
_

?  Will it be close to first X
_

? 
 
• What if we took many repeated samples (of the same 
size) from the same population, and each time, 
calculated the sample mean? 

What would that set of  X
_

 values look like? 
 
The sampling distribution of a statistic is the 
distribution of values of the statistic in all possible 
samples (of the same size) from the same population. 
 



Consider the sampling distribution of the sample mean 

X
_

 when we take samples of size n from a population 
with mean μ and variance σ . 2

 
Picture: 
 
 
 
 

The sampling distribution of  X
_

 has mean μ and 
standard deviation n/σ . 
Notation: 
 
 
 
 
 
Point Estimator:  A statistic which is a single number 
meant to estimate a parameter. 
 
It would be nice if the average value of the estimator 
(over repeated sampling) equaled the target parameter. 
 
An estimator is called unbiased if the mean of its 
sampling distribution is equal to the parameter being 
estimated. 
 
 
 



Examples: 
 
 
 
 
 
 
 
 
 
 
 
 
Another nice property of an estimator:  we want the 
spread of its sampling distribution to be as small as 
possible. 
 
The standard deviation of a statistic’s sampling 
distribution is called the standard error of the statistic. 

The standard error of the sample mean X
_

 is nσ / . 
 
Note:  As the sample size gets larger, the spread of the 
sampling distribution gets smaller. 
 
When the sample size is large, the sample mean varies 
less across samples. 
 
Evaluating an estimator: 

(1) Is it unbiased? 
(2) Does it have a small standard error? 



Central Limit Theorem 
 
We have determined the center and the spread of the 

sampling distribution of  X
_

.  What is the shape of its 
sampling distribution?   
 
Case I:  If the distribution of the original data is 

normal, the sampling distribution of X
_

 is normal.  (This 
is true no matter what the sample size is.) 
 
Case II:  Central Limit Theorem:  If we take a random 
sample (of size n) from any population with mean μ and 

standard deviation σ, the sampling distribution of X
_

 is 
approximately normal, if the sample size is large. 
 
 
 
 
 
How large does n have to be? 
Our rule of thumb:  If n ≥ 30, we can apply the CLT 
result. 
 
Pictures: 
 
 
As n gets larger, the closer the sampling distribution 
looks to a normal distribution. 



Why is the CLT important?  Because when X
_

 is 
(approximately) normally distributed, we can answer 
probability questions about the sample mean. 

Standardizing values of  X
_

: 

If X
_

 is normal with mean μ and standard deviation 
n/σ , then  

n
XZ

/σ
μ−

=  

has a standard normal distribution. 
 
Example:  Suppose we’re studying the failure time (at 
high stress) of a certain engine part.  The failure times 
have a mean of 1.4 hours and a standard deviation of 
0.9 hours. 
 
 
 
  
 
 
 
 
If our sample size is 40 engine parts, then what is the 
sampling distribution of the sample mean? 
 
 
 
 



What is the probability that the sample mean will be 
greater than 1.5? 
 
 
 
 
 
 
 
 
 
 
 
 
Example:  Suppose lawyers’ salaries have a mean of 
$90,000 and a standard deviation of $30,000 (highly 
skewed).  Given a sample of lawyers, can we find the 
probability the sample mean is less than $100,000  
if n = 5?                 If n = 30? 
 
 
 
 
 
 
 
 
 
 
 
 



Other Sampling Distributions 
 
In practice, the population standard deviation σ is 
typically unknown. 
 
We estimate σ with s. 
 

But the quantity ns
X

/
μ−

 no longer has a standard 

normal distribution. 
 
Its sampling distribution is as follows: 
• If the data come from a normal population, then the 

statistic ns
XT

/
μ−

=  has a t-distribution (“Student’s t”) 

with n – 1 degrees of freedom (the parameter of the  
t-distribution). 
 
• The t-distribution resembles the standard normal 
(symmetric, mound-shaped, centered at zero) but it is 
more spread out. 
• The fewer the degrees of freedom, the more spread out 
the t-distribution is. 
• As the d.f. increase, the t-distribution gets closer to the 
standard normal. 
 
Picture: 
 
 
 



Table VI gives values of the t-distribution with specific 
areas to the right of these values: 
 
 
 
 
 
 
 
 
 
Verify: 
In t-distribution with 3 d.f., area to the right of _______ 
is .025.  (Notation: For 3 d.f., t.025 =                ) 
 
In t with 14 d.f., area to the right of _______ is .05. 
 
 
 
In t with 25 d.f., area to the right of _______ is .999. 
 
 
 
 
 
 
 
 
 
 
 



The χ2 (Chi-square) Distribution 
 
Suppose our sample (of size n) comes from a normal 
population with mean μ and standard deviation σ. 
 

Then 2

2)1(
σ

sn −
 has a χ2 distribution with n – 1 degrees of 

freedom. 
 
• The χ2 distribution takes on positive values. 
• It is skewed to the right. 
• It is less skewed for higher degrees of freedom. 
• The mean of a χ2 distribution with n – 1 degrees of 
freedom is n – 1 and the variance is 2(n – 1). 
 
Fact:  If we add the squares of n independent standard 
normal r.v.’s, the resulting sum has a χ2

n distribution. 

Note that 2

2)1(
σ

sn −
 = 

 
 
 
 
 
 
 
 
 

We sacrifice one d.f. by estimating μ with X
_

, so it is χ . 2
n-1



Table VII gives values of a χ2 r.v. with specific areas to 
the right of those values. 
 
 
 
 
 
 
 
 
 
Examples: 
 
For χ2 with 6 d.f., area to the right of __________ is .90. 
 
 
For χ2 with 6 d.f., area to the right of __________ is .05. 
 
 
For χ2 with 80 d.f., area to the right of _________ is .10. 
 
 
 
 
 
 
 
 
 
 
 



The F Distribution 
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 where the two χ2 r.v.’s are 

independent, has an F-distribution with n1 – 1 
“numerator degrees of freedom” and n2 – 1 
denominator degrees of freedom. 
 
So, if we have samples (of sizes n1 and n2) from two 
normal populations, note: 
 
 
 
 
 
 
has an F-distribution with (n1 – 1, n2 – 1) d.f. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Table VIII gives values of F r.v. with area .10 to the right.  
Table IX gives values of F r.v. with area .05 to the right.  
Table X gives values of F r.v. with area .025 to the right.  
Table XI gives values of F r.v. with area .01 to the right.  
 
 
Verify: 
 
For F with (3, 9) d.f., 2.81 has area 0.10 to right. 
 
For F with (15, 13) d.f., 3.82 has area 0.01 to right. 
 
 
• These sampling distributions will be important in 
many inferential procedures we will learn. 
 
 
 


